Skip to main content

What Is the Microscopic Response of a System Driven Far From Equilibrium?

  • Chapter
  • First Online:
Dynamics of Dissipation

Part of the book series: Lecture Notes in Physics ((LNP,volume 597))

Abstract

The central theme of this lecture is that there exists a surprisingly simple and general answer to the question posed in the title, provided that we frame the question statistically. I will present this result along with several derivations, and will discuss some of its implications and generalizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Einstein, Ann. Phys. (Leipzig) 17, 549 (1905).

    Article  Google Scholar 

  2. M. Smoluchowski, Ann. Phys. (Leipzig) 21, 756 (1906).

    Article  Google Scholar 

  3. L. Onsager, Phys. Rev. 37, 405 (1931); Phys.Rev. 38, 2265 (1931).

    Article  MATH  ADS  Google Scholar 

  4. J. Liphardt et al, submitted for publication.

    Google Scholar 

  5. The essence of this interpretation seems to date back to Erwin Schrödinger’s lectures: Statistical Thermodynamics (Cambridge, 1962); see the paragraphs found between Eqs. 2.13 and 2.14. For a more recent reference, see K. Sekimoto, Prog. Theor. Phys. Suppl. 130, 17 (1998).

    Google Scholar 

  6. C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).

    Article  ADS  Google Scholar 

  7. C. Jarzynski, Phys. Rev. E56, 5018 (1997).

    ADS  Google Scholar 

  8. G.E. Crooks, J. Stat. Phys. 90, 1481 (1998).

    Article  MathSciNet  Google Scholar 

  9. C. Jarzynski, Acta Phys. Polon. B B29, 1609 (1998).

    ADS  Google Scholar 

  10. G.E. Crooks, Phys. Rev. E60, 2721 (1999).

    MATH  ADS  Google Scholar 

  11. C. Jarzynski, J. Stat. Phys. 96, 415 (1999).

    Article  MATH  Google Scholar 

  12. G.E. Crooks, Phys. Rev. E61, 2361 (2000).

    ADS  Google Scholar 

  13. S. Yukawa, J. Phys. Soc. Japan 69, 2367 (2000).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. G. Hummer and A. Szabo, Proc. Natl. Acad. Sci. (USA) 98, 3658 (2001).

    Article  ADS  Google Scholar 

  15. R.M. Neal, Statistics and Computing 11, 125 (2001).

    Article  MathSciNet  Google Scholar 

  16. H. Risken, The Fokker-Planck Equation, Springer Verlag, 1989.

    Google Scholar 

  17. C.W. Gardiner, Handbook of Stochastic Methods, Springer Verlag, 2001.

    Google Scholar 

  18. Z. Schuss, Theory and Applications of Stochastic Differential Equations, Wiley, 1980.

    Google Scholar 

  19. H.C. Andersen, J. Chem. Phys. 72, 2384 (1980).

    Article  ADS  Google Scholar 

  20. W.H. Press et al, Numerical recipes in C: the art of scientific computing, Cambridge University Press, 1988.

    Google Scholar 

  21. Ref. [6] discusses this approach in the context of the nonequilibrium work relation.

    Article  ADS  Google Scholar 

  22. M.R. Reddy and M.D. Erion, eds, Free Energy Calculations in Rational Drug Design, Kluwer Publishing, 2001.

    Google Scholar 

  23. D.A. Hendrix and C. Jarzynski, J. Chem. Phys. 114, 5974 (2001).

    Article  ADS  Google Scholar 

  24. G. Hummer, J. Chem. Phys. 114, 7330 (2001).

    Article  ADS  Google Scholar 

  25. H. Nanda, D.M. Zuckerman and T.B. Woolf, Biophys. J. 82, 328A (2002).

    Google Scholar 

  26. D.M. Zuckerman and T.B. Woolf, Chem. Phys. Lett. 351, 445 (2002).

    Article  ADS  Google Scholar 

  27. M.O. Jensen et al, Proc. Natl. Acad. Sci. (USA) 99, 6731 (2002).

    Article  ADS  Google Scholar 

  28. D. Chandler, Intoduction to Modern Statistical Mechanics, Oxford University Press, 1987, Section 5.5.

    Google Scholar 

  29. T. Hatano, Phys. Rev. E60, R5017 (1999).

    ADS  Google Scholar 

  30. T. Hatano and S. Sasa, Phys. Rev. Lett. 86, 3463 (2001).

    Article  ADS  Google Scholar 

  31. Y. Oono and M. Paniconi, Prog. Theor. Phys. Suppl. 130, 29 (1998).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jarzynski, C. (2002). What Is the Microscopic Response of a System Driven Far From Equilibrium?. In: Garbaczewski, P., Olkiewicz, R. (eds) Dynamics of Dissipation. Lecture Notes in Physics, vol 597. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46122-1_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-46122-1_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44111-3

  • Online ISBN: 978-3-540-46122-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics