Skip to main content

Scaling Limits of Schrödinger Quantum Mechanics

  • Chapter
  • First Online:
Dynamics of Dissipation

Part of the book series: Lecture Notes in Physics ((LNP,volume 597))

Abstract

We outline the status of rigorous derivations of certain classical evolution equations as limits of Schrödinger dynamics. We explain two recent results jointly with H.T. Yau in more details. The first one is the derivation of the linear Boltzmann equation as the long time limit of the one-body Schrödinger equation with a random potential. The second one is the mean field limit of high density bosons with Coulomb interaction that leads to the nonlinear Hartree equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Aizenman, Rev. Math. Phys. 6, 1163–1182 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Aizenman and S. Molchanov, Commun. Math. Phys. 157, 245–278 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. P. Anderson, Phys. Rev. 109, 1492–1505 (1958)

    Article  ADS  Google Scholar 

  4. C. Bardos, F. Golse and N. Mauser, Methods Appl. Anal. 2, 275–293 (2000)

    MathSciNet  Google Scholar 

  5. C. Bardos, L. Erdős, F. Golse, N. Mauser and H.-T. Yau, Derivation of the Schrödinger-Poisson equation from the quantum N-body problem. Submitted to C. R. Acad. Sci. (2001)

    Google Scholar 

  6. C. Boldrighini, L. Bunimovich and Y. Sinai, J. Stat. Phys. 32, 477–501, (1983)

    MATH  Google Scholar 

  7. F. Castella, L. Erdős, F. Frommlet and P. A. Markowich, J. Stat. Phys. 100 no. (3/4) 543–601, (2000)

    Article  MATH  Google Scholar 

  8. H. von Dreifus and A. Klein, Commun. Math. Phys. 140, 133–147 (1991)

    Article  MATH  ADS  Google Scholar 

  9. D. Durr, S. Goldstein and J. Lebowitz, Commun. Math. Phys. 113, 209–230 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  10. L. Erdős, Linear Boltzmann equation as the weak coupling limit of the random Schrödinger equation Operator Theory Advances and Applications, Vol. 108, 233–242. Eds. J. Dittrich, P. Exner and M. Tater, Birkhäuser (1999)

    Google Scholar 

  11. L. Erdős, Long time dynamics of an electron in a weakly coupled phonon field. Proceedings of the XIII. International Congress on Mathematical Physics, 273–279, International Press, 2001.

    Google Scholar 

  12. L. Erdős, Linear Boltzmann equation as the long time dynamics of an electron weakly coupled to a phonon field. To appear in J. Stat. Phys., 2002.

    Google Scholar 

  13. L. Erdős, H.-T. Yau, Linear Boltzmann equation as scaling limit of quantum Lorenz gas, Advances in Differential Equations and Mathematical Physics. Contemporary Math. 217, 137–155 (1998)

    Google Scholar 

  14. L. Erdős, H.-T. Yau, Commun. Pure Appl. Math. LIII, 667–735 (2000)

    Article  Google Scholar 

  15. L. Erdős, H.-T. Yau, Derivation of the nonlinear Schrödinger equation from a many-body Coulomb system. Accepted for Adv. Theor. Math. Phys. (2001)

    Google Scholar 

  16. J. Fröhlich and T. Spencer, Commun. Math. Phys. 88, 151–184 (1983)

    Article  MATH  ADS  Google Scholar 

  17. G. Gallavotti, Rigorous theory of the Boltzmann equation in the Lorentz gas, Nota interna n. 358, Univ. di Roma (1970)

    Google Scholar 

  18. P. Gérard, P. A. Markowich, N. J. Mauser and F. Poupaud, Comm. Pure Appl. Math. Vol. L., 323–379 (1997); Erratum: Comm. Pure Appl. Math. Vol. LIII., 280–281 (2000)

    Article  Google Scholar 

  19. J. Ginibre and G. Velo, Commun. Math. Phys. 66, 37–76 (1979) and 68, 45–68 (1979)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. K. Hepp, Commun. Math. Phys. 35, 265–277 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  21. T. G. Ho, L. J. Landau and A. J. Wilkins, Rev. Math. Phys. 5, 209–298 (1992)

    Article  MathSciNet  Google Scholar 

  22. A. M. Il’in and R. Z. Khas’minskii, Theory Probab. Its Appl. (USSR) erdos 9, 421–444 (1964)

    Google Scholar 

  23. A. Klein, Math. Res. Lett. 1, 399–407 (1994)

    MATH  MathSciNet  Google Scholar 

  24. A. Klein, Commun. Math. Phys. 177, 755–773 (1996)

    Article  MATH  ADS  Google Scholar 

  25. H. Kesten and G. Papanicolaou, Commun. Math. Phys. 78, 19–63 (1980)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. W. Kohn, J. M. Luttinger, Phys. Rev. (2) 108, 590–611 (1957)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. O. E. Lanford, Time evolution of large classical systems, ed. J. Moser, Lecture Notes in Physics Vol. 38, 1–111 (1975)

    Google Scholar 

  28. O. E. Lanford, Astérisque 40, 117–137 (1976)

    MathSciNet  Google Scholar 

  29. J. S. Langer, T. Neal, Phys. Rev. Lett. 16, 984–986 (1966)

    Article  ADS  Google Scholar 

  30. P.L. Lions and T. Paul, Rev. Mat. Iberoamericana, 9, 553–618 (1993)

    MATH  MathSciNet  Google Scholar 

  31. P. A. Lee, T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287–337 (1985)

    Article  ADS  Google Scholar 

  32. H. Narnhofer and G. L. Sewell, Comm. Math. Phys. 81, 9–24 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  33. H. Spohn, Commun. Math. Phys. 60, 277–290 (1978)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. H. Spohn, J. Stat. Phys., 17, 385–412 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  35. H. Spohn, Math. Meth. in Appl. Sci. 3, 445–455 (1981)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. H. Spohn, Rev. Mod. Phys. 52 no. 3, 569–615 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  37. D. Vollhardt, P. WÖlfle, Phys. Rev. B 22, 4666–4679 (1980)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Erdős, L. (2002). Scaling Limits of Schrödinger Quantum Mechanics. In: Garbaczewski, P., Olkiewicz, R. (eds) Dynamics of Dissipation. Lecture Notes in Physics, vol 597. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46122-1_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-46122-1_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44111-3

  • Online ISBN: 978-3-540-46122-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics