Skip to main content

Fast Switching of Mesoscopic Magnets

  • Chapter
  • First Online:
Book cover Spin Dynamics in Confined Magnetic Structures II

Abstract

The switching times of submicron-sized magnets are of the order of pico-to nanoseconds. The switching speed is controlled by the geometric shape of the magnets, the intrinsic magnetic properties, and the orientation and strength of the applied field. Precessional motion governs the switching dynamics of small magnetic particles. If the rise time of the external field is faster than the relaxation of the magnetization toward the nearest local minimum, fast switching of particles is possible in fields below the anisotropy field. The switching speed of thin-film elements depends on the reversal mode. Two distinct reversal modes are found: (1) nucleation and expansion of reversed domains and (2) nonuniform rotation of the magnetization. Domain nucleation occurs in randomly oriented, granular hcp-Co thin films and granular CoCrPt elements with perpendicular anisotropy. Rotational processes are found in granular fcc-Co thin films. The switching by rotation is about four times faster than switching by nucleation and expansion of domains. Switching by rotation can be enforced by applying a sufficiently large rotational field. Thermal activation decreases switching time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.W. Pugh: Ferrite core memories that shaped an industry, IEEE Trans. Magn. 20, 1499–1502 (1984)

    Article  ADS  Google Scholar 

  2. D. Weller, A. Moser: Thermal effect limits in ultrahigh-density magnetic recording, IEEE Trans. Magn. 35, 4423–4439 (1999)

    Article  ADS  Google Scholar 

  3. R. H. Koch et al.: Magnetization reversal in micron-sized magnetic thin films, Phys. Rev. Lett. 81, 4512–4515 (1998)

    Article  ADS  Google Scholar 

  4. D. Suess, T. Schrefl, J. Fidler: Reversal modes, thermal stability, and exchange length in perpendicular recording media, IEEE Trans. Magn. 37, 1664–1666 (2001)

    Article  ADS  Google Scholar 

  5. K. J. Kirk, J. N. Chapman, C. D.W. Wilkinson: Switching fields and magnetostatic interactions of thin-film magnetic nanoelements, Appl. Phys. Lett. 71, 539–541 (1997)

    Article  ADS  Google Scholar 

  6. C. H. Back, J. Heidmann, J. McCord: Time resolved Kerr microscopy, Magnetization dynamics in thin-film write heads, IEEE Trans. Magn. 35, 637–642 (1999)

    Article  ADS  Google Scholar 

  7. R. Kikuchi: On the minimum of magnetization reversal time, J. Appl. Phys. 27, 1352–1357 (1956)

    Article  ADS  Google Scholar 

  8. L. He, W. D. Doyle: A theoretical description of magnetic switching experiments in picosecond field pulses, J. Appl. Phys. 79, 6489–6491 (1996)

    Article  ADS  Google Scholar 

  9. M. Bauer, R. Lopusnik, J. Fassbinder, B. Hillebrands: Magnetization reversal in ultrashort magnetic field pulses, J. Magn. Magn. Mater. 218, 165–176 (2000)

    Article  ADS  Google Scholar 

  10. J. C. Mallinson: On damped gyromagnetic precession, IEEE Trans. Magn. 23, 2003–2004 (1987)

    Article  ADS  Google Scholar 

  11. J. C. Mallinson: Damped gyromagnetic switching, IEEE Trans. Magn. 36, 1976–1981 (2000)

    Article  ADS  Google Scholar 

  12. G. Albuquerque, J. Miltat, A. Thiaville: Coherent spin structures dynamics: numerics and application th high density magnetic random access memories (MRAMs), in M. Deville, R. Owens (Eds.): 16th IMACS World Congress on Scientific Computation, Applied Mathematics and Simulation, Lausanne, Switzerland (2000)

    Google Scholar 

  13. L. He, W. D. Doyle, L. Varga, H. Fujiwara, P. J. Flanders: High-speed switching in magnetic recording media, J. Magn. Mater. 155, 6–12 (1996)

    Article  ADS  Google Scholar 

  14. M. Igarashi, F. Akagi, A. Nakamura, H. Ikekame, H. Takano, K. Yoshida: Computer simulation of magnetization switching behavior in high-data-rate hard-disk media, IEEE. Trans. Magn. 36, 154–158 (2000)

    Article  ADS  Google Scholar 

  15. R. W. Harrell: Orientation dependence of the dynamic coercivity of Stoner-Wohlfarth particles, IEEE Trans. Magn. 37, 533–537 (2001)

    Article  ADS  Google Scholar 

  16. T. L. Gilbert: A Lagrangian formulation of gyromagnetic equation of the magnetization field, Phys. Rev. 100, 1243 (1955)

    Google Scholar 

  17. L. Landau, E. Lifshitz: On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z. Sowjetunion 8, 154–169 (1935)

    Google Scholar 

  18. R. Street, D. C. Crew: Fluctuation aftereffects in magnetic materials, IEEE Trans. Magn. 35, 4407–4413 (1999)

    Article  ADS  Google Scholar 

  19. E. C. Stoner, E. P. Wohlfarth: A mechanism of magnetic hysteresis in heterogeneous alloys, Philos. Trans. R. Soc. London A 240, 599–642 (1948)

    Article  ADS  MATH  Google Scholar 

  20. J. Fassbinder: Magnetization dynamics investigated by time-resolved Kerr effect magnetometry, in: Hillebrands, (Ed.):)Topics Appl. Phys. 87, 59–91 (Springer, Berlin, Heidelberg 2003)

    Google Scholar 

  21. W.F. Brown, Jr.: Micromagnetics (Wiley, New York 1963)

    Google Scholar 

  22. T. Schrefl, H. Forster, D. Suess, W. Scholz, V. Tsiantos, J. Fiedler: Micromagnetic simulation of switching events, Adv. Solid State Phys. 41, B. Kramer (Ed.), (Springer, Berlin, Heidelberg 2001) pp. 623–635

    Chapter  Google Scholar 

  23. S. D. Cohen, A. C. Hindmarsh: CVODE, A stiff/nonstiff ODE solver in C, Comput. Phys. 10, 138–143 (1996)

    Google Scholar 

  24. D. R. Fredkin, T. R. Koehler: Hybrid method for computing demagnetizing fields, IEEE Trans. Magn. 26, 415–417 (1990)

    Article  ADS  Google Scholar 

  25. M. Johnson: Magnetoelectronic memories last and last..., IEEE Spectrum 37, 33–40 (2000)

    Article  Google Scholar 

  26. G. A. Prinz: Magnetoelectronic applications, J. Magn. Magn. Mater. 200, 57–68 (1999)

    Article  ADS  Google Scholar 

  27. R. P. Cowburn, M. E. Welland: Room temperature magnetic quantum cellular automata, Science 287, 1466–1468 (2000)

    Article  ADS  Google Scholar 

  28. S.E. Russek, R. D. McMichael, M. J. Donahue, S. Kaka: High-speed switching and rotational dynamics in small magnetic thin-film devices, in: Hillebrands, (Ed.): Topics Appl. Phys. 87, 93–154 (Springer, Berlin, Heidelberg 2003)

    Google Scholar 

  29. W. Yang, D. N. Lambeth, D. E. Laughlin: Dependence of Co anisotropic constants on temperature, processing, and underlayer, J. Appl. Phys. 87, 6884–6886 (2000)

    Article  ADS  Google Scholar 

  30. L. Holloway, H. Laidler: Thermal activation effects in CoCrPtTa media due to stacking faults, IEEE Trans. Magn. 37, 1459–1461 (2001)

    Article  ADS  Google Scholar 

  31. C. T. Rettner, M. E. Best, B. D. Terris: Patterning of granular magnetic media with a focused ion beam to produce single-domain islands at τ; 140Gbit/in2, IEEE Trans. Magn. 37, 1649–1651 (2001)

    Article  ADS  Google Scholar 

  32. W. F. Brown, Jr.: Thermal fluctuations of a single-domain particle, Phys. Rev. 130, 1677–1686 (1963)

    Article  ADS  Google Scholar 

  33. J. L. Garcýa-Palacios, F. J. Lázaro: Langevin-dynamics study of the dynamical properties of small magnetic particles, Phys. Rev. B 58, 14937–14958 (1998)

    Article  ADS  Google Scholar 

  34. D. Hinzke, U. Nowak: Magnetization switching in nanowires: Monte Carlo study with fast fourier transformation for dipolar fields, J. Magn. Magn. Mater. 221, 365–372 (2000)

    Article  ADS  Google Scholar 

  35. K. Zhang, D. R. Fredkin: Stochastic dynamic micromagnetic study of fine particles, J. Appl. Phys. 85, 5208–5210 (1999)

    Article  ADS  Google Scholar 

  36. N. G. van Kampen: Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam 1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schrefl, T. et al. (2003). Fast Switching of Mesoscopic Magnets. In: Hillebrands, B., Ounadjela, K. (eds) Spin Dynamics in Confined Magnetic Structures II. Topics in Applied Physics, vol 87. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46097-7_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-46097-7_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44084-0

  • Online ISBN: 978-3-540-46097-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics