Skip to main content

A Direction Sensitive Network Based on a Biophysical Neurone Model

  • Conference paper
  • First Online:
  • 97 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2415))

Abstract

To our understanding, modelling the dynamics of brain functions on cell level is essential to develop both a deeper understanding and classification of the experimental data as well as a guideline for further research. This paper now presents the implementation and training of a direction sensitive network on the basis of a biophisical neurone model including synaptic excitation, dendritic propagation and action-potential generation. The underlying model not only describes the functional aspects of neural signal processing, but also provides insight into their underlying energy consumption. Moreover, the training data set has been recorded by means of a real robotics system, thus bridging the gap to technical applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Löffler, J. Klahold, U. Rückert, The Mini-Robot Khepera as a foraging Animate: Synthesis and Analysis of Behaviour, Autonomous Minirobots for Research and Edutainment AMiRE 2001, Proceedings of the 5th International Heinz Nixdorf Symposium, pp. 93–130, 2001

    Google Scholar 

  2. J. J. Hopfield, Pattern recognition computation using action potential timing for stimulus representation, Nature, 376, pp. 33 to 36, 6 July 1995

    Google Scholar 

  3. A. Löffler, B. Iske, U. Rückert, A New Neurone Model Describing Biophysical Signal Processing and Energy Consumption, submitted to ICANN 2002, Madrid, Spain

    Google Scholar 

  4. A. Löffler, Energetische Modellierung Neuronaler Signalverarbeitung, PhD thesis (in German), HNI-Verlagsschriftenreihe 72, Paderborn, 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Iske, B., Löffler, A., Rückert, U. (2002). A Direction Sensitive Network Based on a Biophysical Neurone Model. In: Dorronsoro, J.R. (eds) Artificial Neural Networks — ICANN 2002. ICANN 2002. Lecture Notes in Computer Science, vol 2415. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46084-5_26

Download citation

  • DOI: https://doi.org/10.1007/3-540-46084-5_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44074-1

  • Online ISBN: 978-3-540-46084-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics