Skip to main content

Evolution Strategies, Network Random Keys, and the One-Max Tree Problem

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2279))

Abstract

Evolution strategies (ES)are efficient optimization methods for continuous problems. However, many combinatorial optimization methods can not be represented by using continuous representations. The development of the network random key representation which represents trees by using real numbers allows one to use ES for combinatorial tree problems.

In this paper we apply ES to tree problems using the network random key representation. We examine whether existing recommendations regarding optimal parameter settings for ES, which were developed for the easy sphere and corridor model, are also valid for the easy one-max tree problem.

The results show that the \( \frac{1} {5} \)-success rule for the (1+1)-ES results in low performance because the standard deviation is continuously reduced and we get early convergence. However, for the (μ+λ)-ES and the (μ, λ)-ES the recommendations from the literature are confirmed for the parameters of mutation \( \tau _1 \) and \( \tau _2 \) and the ratio μ/λ. This paper illustrates how existing theory about ES is helpful in finding good parameter settings for new problems like the one-max tree problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.-P. Schwefel. Kybernetische Evolution als Strategie der experimentellen Forschung in der Strömungstechnik. Master’s thesis, Technische Universität Berlin, 1965.

    Google Scholar 

  2. I. Rechenberg. Cybernetic solution path of an experimental problem. Technical Report 1122, Royal Aircraft Establishment, Library Translation, Farnborough, Hants., UK, 1965.

    Google Scholar 

  3. H.-P. Schwefel. Experimentelle Optimierung einer Zweiphasendüse. Bericht 35, AEG Forschungsinstitut Berlin, Projekt MHD-Staustahlrohr, 1968.

    Google Scholar 

  4. J. H. Holland. Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor, MI, 1975.

    Google Scholar 

  5. F. Rothlauf, D. E. Goldberg, and A. Heinzl. Network random keys-a tree network representation scheme for genetic and evolutionary algorithms. Technical Report No. 8/2000, University of Bayreuth, Germany, 2000. to be published in Evolutionary Computation.

    Google Scholar 

  6. J. C. Bean. Genetics and random keys for sequencing and optimization. Technical Report 92–43, Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, June 1992.

    Google Scholar 

  7. Franz Rothlauf. Towards a Theory of Representations for Genetic and Evolutionary Algorithms: Development of Basic Concepts and their Application to Binary and Tree Representations. PhD thesis, University of Bayreuth/Germany, 2001.

    Google Scholar 

  8. C. C. Palmer. An approach to a problem in networkdesign using genetic algorithms. unpublished PhD thesis, Polytechnic University, Troy, NY, 1994.

    Google Scholar 

  9. H. Prüfer. Neuer Beweis eines Satzesüber Permutationen. Archiv für Mathematikund Physik, 27:742–744, 1918.

    Google Scholar 

  10. Günther R. Raidl. An efficient evolutionary algorithm for the degree-constrained minimum spanning tree problem. In Proceedings of 2000 IEEE International Conference on Evolutionary Computation, pages 43–48, Piscataway, NJ, 2000. IEEE.

    Google Scholar 

  11. F. Abuali, R. Wainwright, and D. Schoenefeld. Determinant factorization and cycle basis: Encoding schemes for the representation of spanning trees on incomplete graphs. In Proceedings of the 1995 ACM/SIGAPP Symposium on Applied Comuting, pages 305–312, Nashville, TN, February 1995. ACM Press.

    Google Scholar 

  12. R. Hamming. Coding and Information Theory. Prentice-Hall, 1980.

    Google Scholar 

  13. D. E. Goldberg, K. Deb, and D. Thierens. Toward a better understanding of mixing in genetic algorithms. Journal of the Society of Instrument and Control Engineers, 32(1):10–16, 1993.

    Google Scholar 

  14. I. Rechenberg. Bionik, Evolution und Optimierung. Naturwissenschaftliche Rundschau, 26(11):465–472, 1973.

    Google Scholar 

  15. H.-P. Schwefel. Evolutionsstrategie und numerische Optimierung. PhD thesis, Technical University of Berlin, 1975.

    Google Scholar 

  16. T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York, 1996.

    MATH  Google Scholar 

  17. H.-P. Schwefel. Evolution and Optimum Seeking. Wisley & Sons, New York, 1995.

    Google Scholar 

  18. H.-P. Schwefel. Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie. Birkhäuser, Basel, 1977. from Interdisciplinary Systems Research, volume 26.

    Google Scholar 

  19. F. Kursawe. Grundlegende empirische Untersuchungen der Parameter von Evolutionsstrategien-Metastrategien. PhD thesis, University of Dortmund, 1999.

    Google Scholar 

  20. V. Nissen. Einführung in evolutionäre Algorithmen: Optimierung nach dem Vorbild der Evolution. Vieweg, Wiesbaden, 1997.

    Google Scholar 

  21. H.-P. Schwefel. Collective phenomena in evolutionary systems. In P. Checkland and I. Kiss, editors, Problems of Constancy and Change-The Complementarity of Systems Approaches to Complexity, volume 2, pages 1025–1033, Budapest, 1987. Papers presented at the 31st Annual Meeting of the International Society for General System Research.

    Google Scholar 

  22. Barbara Schindler. Einsatz von Evolutionären Stratgien zur Optimierung baumförmiger Kommunikationsnetzwerke. Master’s thesis, Universität Bayreuth, Lehrstuhl für Wirtschaftsinformatik, Mai 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schindler, B., Rothlauf, F., Pesch, HJ. (2002). Evolution Strategies, Network Random Keys, and the One-Max Tree Problem. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds) Applications of Evolutionary Computing. EvoWorkshops 2002. Lecture Notes in Computer Science, vol 2279. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46004-7_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-46004-7_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43432-0

  • Online ISBN: 978-3-540-46004-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics