Skip to main content

Vision and Touch for Grasping

  • Conference paper
  • First Online:
  • 551 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2238))

Abstract

This paper introduces our one-armed stationary humanoid robot GripSee together with research projects carried out on this platform. The major goal is to have it analyze a table scene and manipulate the objects found. Gesture-guided pick-and-place This has already been implemented for simple cases without clutter. New objects can be learned under user assistance, and first work on the imitation of grip trajectories has been completed.

Object and gesture recognition are correspondence-based and use elastic graph matching. The extension to bunch graph matching has been very fruitful for face and gesture recognition, and a similar memory organization for aspects of objects is a subject of current research.

In order to overcome visual inaccuracies during grasping we have built our own type of dynamic tactile sensor. So far they are used for dynamics that try to optimize the symmetry of the contact distribution across the gripper. With the help of those dynamics the arm can be guided on an arbitrary trajectory with negligible force.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sven J. Dickinson, Henrik I. Christensen, John K. Tsotsos, and Göran Olofsson. Active object recognition integrating attention and viewpoint control. Computer Vision and Image Understanding, 67:239–260, 1997.

    Article  Google Scholar 

  2. G.D. Hager. A modular system for robust positioning using feedback from stereo vision. IEEE Trans. Robotics and Automation, 13(4):582–595, 1997.

    Article  MathSciNet  Google Scholar 

  3. Seth Hutchinson, Gregory D. Hager, and Peter I. Corke. A tutorial on visual servo control. IEEE Transactions on Robotics and Automation, 12(5):651–670, 1996.

    Article  Google Scholar 

  4. Efthimia Kefalea. Flexible Object Recognition for a Grasping Robot. PhD thesis, Computer Science, Univ. of Bonn, Germany, March 1999.

    Google Scholar 

  5. Danica Kragić and Henrik I. Christensen. Cue integration for visual servoing. IEEE Transactions on Robotics and Automation, 17(1):18–27, 2001.

    Article  Google Scholar 

  6. Martin Lades, Jan C. Vorbrüggen, Joachim Buhmann, Jörg Lange, Christoph von der Malsburg, Rolf P. Würtz, and Wolfgang Konen. Distortion invariant object recognition in the dynamic link architecture. IEEE Transactions on Computers, 42(3):300–311, 1993.

    Article  Google Scholar 

  7. Eric Maël. Adaptive and Flexible Robotics for Visual and Tactile Grasping. PhD thesis, Physics Dept., Univ. of Bochum, Germany, December 2000.

    Google Scholar 

  8. S. Mallat and S. Zhong. Characterization of signals from multiscale edges. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14:710–732, 1992.

    Article  Google Scholar 

  9. Kevin Nickels and Seth Hutchinson. Model-based tracking of complex articulated objects. IEEE Transactions on Robotics and Automation, 1997.

    Google Scholar 

  10. Mike Pagel, Eric Maël, and Christoph von der Malsburg. Self calibration of the fixation movement of a stereo camera head. Autonomous Robots, 5:355–367, 1998.

    Article  Google Scholar 

  11. Mike Pagel, Eric Maël, and Christoph von der Malsburg. Self calibration of the fixation movement of a stereo camera head. Machine Learning, 31:169–186, 1998.

    Article  Google Scholar 

  12. Josef Pauli. Learning to recognize and grasp objects. Autonomous Robots, 5(3/4):407–420, 1998.

    Article  Google Scholar 

  13. Gabriele Peters. Representation of 3D-Objects by 2D-Views. PhD thesis, Technical Faculty, University of Bielefeld, Germany, 2001. In preparation.

    Google Scholar 

  14. Gabriele Peters and Christoph von der Malsburg. View Reconstruction by Linear Combinations of Sample Views. In submitted to: International Conference on Knowledge Based Computer Systems (KBCS’2000), Mumbai, December 17–19, 2000, 2000.

    Google Scholar 

  15. P. Jonathan Philips, Hyeonjoon Moon, Syed A. Rizvi, and Patrick J. Rauss. The FERET evaluation methodology for face-recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(10):1090–1104, 2000.

    Article  Google Scholar 

  16. Michael Rinne, Michael Pötzsch, Christian Eckes, and Christoph von der Malsburg. Designing Objects for Computer Vision: The Backbone of the Library FLAVOR. Internal Report IRINI 99-08, Institut für Neuroinformatik, Ruhr-Universität Bochum, D-44780 Bochum, Germany, December 1999.

    Google Scholar 

  17. Achim Schäfer. Visuelle Erkennung von menschlichen Armbewegungen mit Unterst ützung eines dynamischen Modells. Master’s thesis, Physics Dept., Univ. of Bochum, Germany, February 2000.

    Google Scholar 

  18. Peer Schmidt. Aufbau taktiler Sensoren für eine Roboterhand. Master’s thesis, Physics Dept., Univ. Bochum, Germany, December 1998.

    Google Scholar 

  19. Peer Schmidt, Eric Maël, and Rolf P. Würtz. A novel sensor for dynamic tactile information. Robotics and Autonomous Systems, 2000. In revision.

    Google Scholar 

  20. J. Triesch and C. Eckes. Object recognition with multiple feature types. In L. Niklasson, M. Bodén, and T. Ziemke, editors, Proceedings of the ICANN’98, International Conference on Artificial Neural Networks, pages 233–238. Springer, 1998.

    Google Scholar 

  21. J. Triesch and C. von der Malsburg. A gesture interface for robotics. In FG’98, the Third International Conference on Automatic Face and Gesture Recognition, pages 546–551. IEEE Computer Society Press, 1998.

    Google Scholar 

  22. J. Triesch, J. Wieghardt, C. v.d. Malsburg, and E. Maël. Towards imitation learning of grasping movements by an autonomous robot. In A. Braffort, R. Gherbi, S. Gibet, Richardson, and D. J., Teil, editors, Gesture-Based Communication in Human-Computer Interaction, International Gesture Workshop, GW’99, Gif-sur-Yvette, France, March 17-19, 1999 Proceedings, volume 17 of Lecture Notes in Computer Science. Springer-Verlag, 1999. ISBN 3-540-66935-3.

    Google Scholar 

  23. Jochen Triesch. Vision-Based Robotic Gesture Recognition. PhD thesis, Physics Dept., Univ. of Bochum, Germany, 1999.

    Google Scholar 

  24. Jochen Triesch and Christoph von der Malsburg. Robust classification of hand postures against complex backgrounds. In Proceedings of the Second International Conference on Automatic Face and Gesture Recognition, pages 170–175. IEEE Computer Society Press, 1996.

    Google Scholar 

  25. J.K. Tsotsos, G. Verghese, S. Dickinson, M. Jenkin, A. Jepson, E. Milios, F. Nuflot, S. Stevenson, M. Black, D. Metaxas, S. Culhane, Y. Ye, and R. Mann. PLAYBOT: A visually-guided robot to assist physically disabled children in play. Image and Vision Computing, 16:275–292, 1998.

    Article  Google Scholar 

  26. J. Wieghardt and C. von der Malsburg. Pose-independent object representation by 2-d views. In IEEE International Workshop on Biologically Motivated Computer Vision, May 15–17, Seoul, 2000.

    Google Scholar 

  27. Jan Wieghardt. Learning the Topology of Views: From Images to Objects. PhD thesis, Physics Dept., Univ. of Bochum, Germany, July 2001.

    Google Scholar 

  28. Laurenz Wiskott. Labeled Graphs and Dynamic Link Matching for Face Recognition and Scene Analysis. Reihe Physik. Verlag Harri Deutsch, Thun, Frankfurt am Main, 1996.

    Google Scholar 

  29. Laurenz Wiskott, Jean-Marc Fellous, Norbert Krüger, and Christoph von der Malsburg. Face recognition by elastic bunch graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7):775–779, 1997.

    Article  Google Scholar 

  30. Rolf P. Würtz. Multilayer Dynamic Link Networks for Establishing Image Point Correspondences and Visual Object Recognition. Verlag Harri Deutsch, Thun, Frankfurt am Main, 1995.

    MATH  Google Scholar 

  31. Rolf P. Würtz. Object recognition robust under translations, deformations and changes in background. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7):769–775, 1997.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Würtz, R.P. (2002). Vision and Touch for Grasping. In: Hager, G.D., Christensen, H.I., Bunke, H., Klein, R. (eds) Sensor Based Intelligent Robots. Lecture Notes in Computer Science, vol 2238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45993-6_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-45993-6_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43399-6

  • Online ISBN: 978-3-540-45993-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics