Skip to main content

Geometry and Part Feeding

  • Conference paper
  • First Online:
Sensor Based Intelligent Robots

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2238))

Abstract

Many automated manufacturing processes require parts to be oriented prior to assembly. A part feeder takes in a stream of identical parts in arbitrary orientations and outputs them in uniform orientation. We consider part feeders that do not use sensing information to accomplish the task of orienting a part; these feeders include vibratory bowls, parallel jaw grippers, and conveyor belts and tilted plates with so-called fences. The input of the problem of sensorless manipulation is a description of the part shape and the output is a sequence of actions that moves the part from its unknown initial pose into a unique final pose. For each part feeder we consider, we determine classes of orientable parts, give algorithms for synthesizing sequences of actions, and derive upper bounds on the length of these sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. K. Agarwal, A. D. Collins, and J. L. Harer. Minimal trap design. 2000.

    Google Scholar 

  2. S. Akella, W. Huang, K. M. Lynch, and M. T. Mason. Parts feeding on a conveyor with a one joint robot. Algorithmica, 26:313–344, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  3. S. Akella and M. T. Mason. Posing polygonal objects in the plane by pushing. In IEEE International Conference on Robotics and Automation (ICRA), pages 2255–2262, 1992.

    Google Scholar 

  4. S. Basu. New results on quantifier elimination over real closed fields and applications to constraint databases. Journal of the ACM, 46(4):537–555, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  5. S. Basu, R. Pollack, and M-F. Roy. On the combinatorial and algebraic complexity of quantifier elimination. Journal of the ACM, 43:1002–1045, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. de Berg, M. van Kreveld, M. H. Overmars, and O. Schwarzkopf. Computational Geometry: Algorithms and Applications. Springer-Verlag, Berlin, 1997.

    MATH  Google Scholar 

  7. D. Berkowitz and J. Canny. Designing parts feeders using dynamic simulation. In IEEE International Conference on Robotics and Automation (ICRA), pages 1127–1132, 1996.

    Google Scholar 

  8. R-P. Berretty. Geometric design of part feeders. PhD thesis, Institute of Information and Computing Sciences, Utrecht University, 2000.

    Google Scholar 

  9. R-P. Berretty, K. Y. Goldberg, L. Cheung, M. H. Overmars, G. Smith, and A. F. van der Stappen. Trap design for vibratory bowl feeders. In IEEE International Conference on Robotics and Automation (ICRA), pages 2558–2563, 1999.

    Google Scholar 

  10. R-P. Berretty, K. Y. Goldberg, M. H. Overmars, and A. F. van der Stappen. Algorithms for fence design. In Robotics, the algorithmic perspective, pages 279–295. A. K. Peters, 1998.

    Google Scholar 

  11. R-P. Berretty, K. Y. Goldberg, M. H. Overmars, and A. F. van der Stappen. Computing fence designs for orienting parts. Computational Geometry: Theory and Applications, 10(4):249–262, 1998.

    MATH  MathSciNet  Google Scholar 

  12. R-P. Berretty, K. Y. Goldberg, M. H. Overmars, and A. F. van der Stappen. Geometric techniques for trap design. In Annual ACM Symposium on Computational Geometry, pages 95–104, 1999.

    Google Scholar 

  13. R-P. Berretty, K. Y. Goldberg, M. H. Overmars, and A. F. van der Stappen. Geometric trap design for automatic part feeders. In International Symposium on Robotics Research (ISRR), pages 139–144, 1999.

    Google Scholar 

  14. R-P. Berretty, K. Y. Goldberg, M. H. Overmars, and A. F. van der Stappen. Orienting parts by inside-out pulling. In IEEE International Conference on Robotics and Automation (ICRA), 2001. To appear.

    Google Scholar 

  15. R-P. Berretty, K. Y. Goldberg, M. H. Overmars, and A. F. van der Stappen. Orienting polyhedral parts by pushing. Computational Geometry: Theory and Applications, 2001. To appear.

    Google Scholar 

  16. K-F. Böhringer, V. Bhatt, B. R. Donald, and K. Y. Goldberg. Algorithms for sensorless manipulation using a vibrating surface. Algorithmica, 26:389–429, 2000.

    Article  MathSciNet  Google Scholar 

  17. K-F. Böhringer, B. R. Donald, and N. C. MacDonald. Upper and lower bounds for programmable vector fields with applications to mems and vibratory plate part feeders. Algorithms for Robotic Motion and Manipulation, J.-P. Laumond and M. Overmars (Eds.), A. K. Peters, pages 255–276, 1996.

    Google Scholar 

  18. G. Boothroyd and P. Dewhurst. Design for Assembly-A Designers Handbook. Department of Mechanical Engineering, University of Massachusetts, Amherst, Mass., 1983.

    Google Scholar 

  19. G. Boothroyd, C. Poli, and L. Murch. Automatic Assembly. Marcel Dekker, Inc., New York, 1982.

    Google Scholar 

  20. M. Brokowski, M. A. Peshkin, and K. Y. Goldberg. Optimal curved fences for part alignment on a belt. ASME Transactions of Mechanical Design, 117, 1995.

    Google Scholar 

  21. M. E. Caine. The design of shape interaction using motion constraints. In IEEE International Conference on Robotics and Automation (ICRA), pages 366–371, 1994.

    Google Scholar 

  22. J. Canny and K. Y. Goldberg. Risc for industrial robotics: Recent results and open problems. In IEEE International Conference on Robotics and Automation (ICRA), pages 1951–1958, 1994.

    Google Scholar 

  23. Y-B. Chen and D. J. Ierardi. The complexity of oblivious plans for orienting and distinguishing polygonal parts. Algorithmica, 14:367–397, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  24. A. Christiansen, A. Edwards, and C. Coello. Automated design of parts feeders using a genetic algorithm. In IEEE International Conference on Robotics and Automation (ICRA), pages 846–851, 1996.

    Google Scholar 

  25. M. A. Erdmann and M. T. Mason. An exploration of sensorless manipulation. IEEE Journal of Robotics and Automation, 4:367–379, 1988.

    Article  Google Scholar 

  26. K. Y. Goldberg. Orienting polygonal parts without sensors. Algorithmica, 10(2):201–225, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  27. M. Jakiela and J. Krishnasamy. Computer simulation of vibratory parts feeding and assembly. In International Conference on Discrete Element Methods, pages 403–411, 1993.

    Google Scholar 

  28. L. Lim, B. Ngoi, S. Lee, S. Lye, and P. Tan. A computer-aided framework for the selection and sequencing of orientating devices for the vibratory bowl feeder. International Journal of Production Research, 32(11):2513–2524, 1994.

    Article  MATH  Google Scholar 

  29. K. M. Lynch and M. T. Mason. Stable pushing: Mechanics, controllability, and planning. International Journal of Robotics Research, 15(6):533–556, 1996.

    Article  Google Scholar 

  30. M. T. Mason. Mechanics of robotic manipulation. Unpublished book.

    Google Scholar 

  31. M. T. Mason. Manipulator grasping and pushing operations. PhD thesis, MIT, 1982. published in Robot Hands and the Mechanics of Manipulation, MIT Press, Cambridge, 1985.

    Google Scholar 

  32. G. Maul and M. Thomas. A systems model and simulation of the vibratory bowl feeder. Journal of Manufacturing Systems, 16(5):309–314, 1997.

    Article  Google Scholar 

  33. B. K. Natarajan. Some paradigms for the automated design of parts feeders. International Journal of Robotics Research, 8(6):89–109, 1989.

    Google Scholar 

  34. M. A. Peshkin and A. C. Sanderson. The motion of a pushed sliding workpiece. IEEE Journal of Robotics and Automation, 4(6):569–598, 1988.

    Article  Google Scholar 

  35. M. A. Peshkin and A. C. Sanderson. Planning robotic manipulation strategies for workpieces that slide. IEEE Journal of Robotics and Automation, pages 696–701, 1988.

    Google Scholar 

  36. A. Rao and K. Y. Goldberg. Manipulating algebraic parts in the plane. IEEE Transactions on Robotics and Automation, 11:589–602, 1995.

    Article  Google Scholar 

  37. A. F. van der Stappen, K. Y. Goldberg, and M. H. Overmars. Geometric eccentricity and the complexity of manipulation plans. Algorithmica, 26:494–514, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  38. D. E. Whitney. Real robots don’t need jigs. In IEEE International Conference on Robotics and Automation (ICRA), volume 1, pages 746–752, 1986.

    Google Scholar 

  39. J. A. Wiegley, K. Y. Goldberg, M. Peshkin, and M. Brokowski. A complete algorithm for designing passive fences to orient parts. Assembly Automation, 17(2):129–136, 1997.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van der Stappen, A.F., Berretty, RP., Goldberg, K., Overmars, M.H. (2002). Geometry and Part Feeding. In: Hager, G.D., Christensen, H.I., Bunke, H., Klein, R. (eds) Sensor Based Intelligent Robots. Lecture Notes in Computer Science, vol 2238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45993-6_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-45993-6_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43399-6

  • Online ISBN: 978-3-540-45993-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics