Evolving Fuzzy Decision Trees with Genetic Programming and Clustering

  • Jeroen Eggermont
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2278)


In this paper we present a new fuzzy decision tree representation for data classification using genetic programming. The new fuzzy representation utilizes fuzzy clusters for handling continuous attributes. To make optimal use of the fuzzy classifications of this representation an extra fitness measure is used. The new fuzzy representation will be compared, using several machine learning data sets, to a similar non-fuzzy representation as well as to some other evolutionary and non-evolutionary algorithms from literature.


Membership Function Genetic Program Fuzzy Membership Function Fuzzy Representation Fuzzy Association Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Banzhaf, P. Nordin, R.E. Keller, and F.D. Francone. Genetic Programming-An Introduction; On the Automatic Evolution of Computer Programs and its Applications. Morgan Kaufmann, 1998.Google Scholar
  2. 2.
    L. Breiman. Bagging predictors. Machine Learning, 26(2):123–140, 1996.Google Scholar
  3. 3.
    J. Eggermont and J. I. van Hemert. Adaptive genetic programming applied to new and existing simple regression problems. In J. Miller, M. Tomassini, P.L. Lanzi, C. Ryan, A.G.B. Tetamanzi, and W.B. Langdon, editors, Proceedings on the Fourth European Conference on Genetic Programming (EuroGP’01), volume 2038 of LNCS, pages 23–35. Springer-Verlag, 2001.Google Scholar
  4. 4.
    Y. Freund and R.E. Schapire. Experiments with a new boosting algorithm. In Proc. 13th International Conference on Machine Learning, pages 148–146. Morgan Kaufmann, 1996.Google Scholar
  5. 5.
    J.M. de Graaf, W.A. Kosters, and J.J.W. Witteman. Interesting fuzzy association rules in quantitative databases. In L. de Raedt and A. Siebes, editors, 5th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD’01), volume 2168 of LNAI, pages 140–151. Springer Verlag, 2001.Google Scholar
  6. 6.
    Th.D. Haynes, D.A. Schoenefeld, and R. L. Wainwright. Type inheritance in strongly typed genetic programming. In P.J. Angeline and K.E. Kinnear, Jr., editors,Advances in Genetic Programming 2, chapter 18, pages 359–376. MIT Press, Cambridge, MA, USA, 1996.Google Scholar
  7. 7.
    L. Kaufman. Finding groups in data: An introduction to cluster analysis. In Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York, 1990.Google Scholar
  8. 8.
    M. Keijzer, J. J. Merelo, G. Romero, and M. Schoenauer. Evolving objects: A general purpose evolutionary computation library. In P. Collet et al., editor, Proceedings of Evolution Artificielle’01, LNCS. Springer Verlag, 2001. To appear.Google Scholar
  9. 9.
    J.R. Koza. Genetic Programming. MIT Press, 1992.Google Scholar
  10. 10.
    J.J. Liu and J.T. Kwok. An extended genetic rule induction algorithm. In Proc. of the 2000 Congress on Evolutionary Computation, pages 458–463, Piscataway, NJ,2000. IEEE Service Center.Google Scholar
  11. 11.
    R.R.F. Mendes, F.B. Voznika, A.A. Freitas, and J.C. Nievola. Discovering fuzzy classification rules with genetic programming and co-evolution. In L. de Raedt and A. Siebes, editors, 5th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD’01), volume 2168 of LNAI, pages 314–325.Springer Verlag, 2001.Google Scholar
  12. 12.
    D.J. Montana. Strongly typed genetic programming. Evolutionary Computation,3(2):199–230, 1995.CrossRefGoogle Scholar
  13. 13.
    J. Peña, J. Lozano, and P. Larrañaga. An empirical comparison of four initialization methods for the k-means algorithm. Pattern Recognition Letters, 20:1027–1040,1999.CrossRefGoogle Scholar
  14. 14.
    J.R. Quinlan. C4.5: Programs for machine learning. Morgan Kaufmann, 1993.Google Scholar
  15. 15.
    D. Palomo van Es. Fuzzy association rules and promotional sales data. Master’s thesi Leiden University, 2001.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Jeroen Eggermont
    • 1
  1. 1.Leiden Institute of Advanced Computer ScienceUniversiteit LeidenThe Netherlands

Personalised recommendations