Coevolution Produces an Arms Race among Virtual Plants

  • Marc Ebner
  • Adrian Grigore
  • Alexander Heffner
  • Jürgen Albert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2278)


Creating interesting virtual worlds is a difficult task. We are using a variant of genetic programming to automatically create plants for a virtual environment. The plants are represented as context-free Lindenmayer systems. OpenGL is used to visualize and evaluate the plants. Our plants have to collect virtual sunlight through their leaves in order to reproduce successfully. Thus we have realized an interaction between the plant and its environment. Plants are either evaluated separately or all individuals of a population at the same time. The experiments show that during coevolution plants grow much higher compared to rather bushy plants when plants are evaluated in isolation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Beneš. An efficient estimation of light in simulation of plant development. In R. Boulic and G. Hegron (eds.), Computer Animation and Simulation 96, pp. 153–165, Berlin, 1996. Springer-Verlag.Google Scholar
  2. 2.
    T. Broughton, A. Tan, and P. S. Coates. The use of genetic programming in exploring 3d design worlds. In R. Junge (ed.), CAAD Futures 1997. Proc. of the 7th Int. Conf. on Computer Aides Architectural Design Futures, Munich, Germany, pp. 885–915, Dordrecht, 1997. Kluwer Academic Publishers.Google Scholar
  3. 3.
    P. Coates, T. Broughton, and H. Jackson. Exploring three-dimensional design worlds using Lindenmeyer systems and genetic programming. In P. J. Bentley (ed.), Evolutionary Design by Computers, pp. 323–341. Morgan Kaufmann, 1999.Google Scholar
  4. 4.
    M. D. Davis and E. J. Weyuker. Computability, Complexity, and Languages. Academic Press Limited, San Diego, CA, 1983.zbMATHGoogle Scholar
  5. 5.
    R. Dawkins and J. R. Krebs. Arms races between and within species. Proc. R. Soc. Lond. B, 205:489–511, 1979.CrossRefGoogle Scholar
  6. 6.
    R. Dawkins. The Blind Watchmaker. W. W. Norton & Company, New York, 1996.Google Scholar
  7. 7.
    O. Deussen, P. Hanrahan, B. Lintermann, R. Měch, M. Pharr, and P. Prusinkiewicz. Realistic modeling and rendering of plant ecosystems. In SIGGRAPH’ 98 Conf. Proc., Computer Graphics, Orlando, Florida, pp. 275–286. ACM Press, 1998.Google Scholar
  8. 8.
    A. Grigore, A. Heffner, M. Ebner, and J. Albert. Evolution virtueller Pflanzen. Technical Report 280, UniversitätWürzburg, Lehrstuhl für Informatik II, Am Hubland, 97074 Würzburg, Germany, August 2001.Google Scholar
  9. 9.
    G. S. Hornby and J. B. Pollack. The advantages of generative grammatical encodings for physical design. In Proc. of the 2001 Congress on Evolutionary Computation, COEX, Seoul, Korea, pp. 600–607. IEEE Press, 2001.Google Scholar
  10. 10.
    C. Jacob. Genetic L-system programming. In Y. Davudor, H.-P. Schwefel, and R. Männer (eds.), Parallel Problem Solving from Nature-PPSN III. The 3rd Int. Conf. on Evolutionary Computation. Jerusalem, Israel, pp. 334–343, Berlin, 1994. Springer-Verlag.Google Scholar
  11. 11.
    C. Jacob. Evolution programs evolved. In H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel (eds.), Parallel Problem Solving from Nature-PPSN IV. The 4th Int. Conf. on Evolutionary Computation. Berlin, Germany, pp. 42–51, Berlin, 1996. Springer-Verlag.Google Scholar
  12. 12.
    C. Jacob. Evolving evolution programs: Genetic programming and L-systems. In J.R. Koza, D.E. Goldberg, D.B. Fogel, and R.L. Riolo (eds.),Proc. of the 1st Annual Conf. on Genetic Programming}, pp.107–115,Cambridge,MA},1996}. The MIT PGoogle Scholar
  13. 13.
    C. Jacob. Evolution and coevolution of developmental programs. Computer Physics Communications, pp. 46–50, 1999.Google Scholar
  14. 14.
    J. T. Kim. LindEvol: Artificial models for natural plant evolution. Künstliche Intelligenz, 1:26–32, 2000.Google Scholar
  15. 15.
    G. Kókai, Z. Tóth, and R. Ványi. Application of genetic algorithms with more populations for Lindenmayer systems. In E. Alpaydin and C. Fyfe (eds.), Int. ICSC Symposium on Engineering of Intelligent Systems EIS’98, University of La Laguna, Tenerife, Spain, pp. 324–331, Canada/Switzerland, 1998. ICSC Academic Press.Google Scholar
  16. 16.
    G. Kókai, Z. Tóth, and R. Ványi. Evolving artificial trees described by parametric L-systems. In Proc. of the 1999 IEEE Canadian Conf. on Electrical and Computer Engineering, Shaw Conference Center, Edmonton, Alberta, Canada, pp. 1722–1727. IEEE Press, 1999.Google Scholar
  17. 17.
    J. R. Koza. Genetic Programming. On the Programming of Computers by Means of Natural Selection. The MIT Press, Cambridge, MA, 1992.Google Scholar
  18. 18.
    J. R. Koza. Genetic Programming II. Automatic Discovery of Reusable Programs. The MIT Press, Cambridge, MA, 1994.Google Scholar
  19. 19.
    K. J. Mock. Wildwood: The evolution of L-system plants for virtual environments. In Int. Conf. on Evolutionary Computation, Anchorage, AK, pp. 476–480, 1998.Google Scholar
  20. 20.
    K. J. Niklas. Computer-simulated plant evolution. Scientific American, 254(3):68–75, 1986.CrossRefGoogle Scholar
  21. 21.
    G. Ochoa. On genetic algorithms and Lindenmayer systems. In Parallel Problem Solving from Nature-PPSN V, pp. 335–344, Berlin, 1998. Springer-Verlag.Google Scholar
  22. 22.
    P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants. Springer Verlag, New York, 1990.zbMATHGoogle Scholar
  23. 23.
    L. Van Valen. A new evolutionary law. Evolutionary Theory, 1:1–30, July 1973.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Marc Ebner
    • 1
  • Adrian Grigore
    • 1
  • Alexander Heffner
    • 1
  • Jürgen Albert
    • 1
  1. 1.Universität WürzburgLehrstuhl für Informatik IIAm HublandGermany

Personalised recommendations