Advertisement

Transformation of Equational Specification by Means of Genetic Programming

  • Aitor Ibarra
  • J. Lanchares
  • J. M. Mendias
  • J. I. Hidalgo
  • R. Hermida
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2278)

Abstract

High Level Synthesis (HLS)is a designing methodology aimed to the synthesis of RT-level hardware devices from behavioral development specifications. In this work we present an evolutionary algorithm in order to optimize circuit specifications by means of a special type of genetic operator. We have named this operator algebraic mutation, carried out with the help of algebraic equations. This work can be classified within the development of an automatic tool of Formal Synthesis by using genetic techniques. We have applied this technique to a simple circuit equational specification and to a much more complex algebraic equation. In the first case our algorithm simplifies the equation until the best specification is found and in the second a solution improving the former is always obtained.

Keywords

Genetic Programming Mutation Operator Crossover Operator Pulse Code Modulation Main Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Banzhaf, P. Nordin, R.E. Keller and F.D. Francone, Genetic Programming An introduction. On the Automatic Evolution of Computer Programs and Its Applications, Morgan Kaufmann, dpunkt.verlag, 1998.Google Scholar
  2. 2.
    CCITT, Adaptative differential pulse code modulation (ADPCM), Rec.G.721, Fascicle III. 4, 1998.Google Scholar
  3. 3.
    K. Chellapilla, Evolving Computer Programs Without Subtree Crossover, IEEE Transactions on Evolutionary Computation, 1(3):209–216 1997.CrossRefGoogle Scholar
  4. 4.
    J. I. Hidalgo, Técnicas de partición y Ubicación para Sistemas Multi-FPGA basadas en Algoritmos Genéticos, Tesis doctoral, noviembre 2001.Google Scholar
  5. 5.
    J. R. Koza, Genetic Programming:On the programming of Computers by Means of natural Selection, MIT Press, Cambridge MA, 1992.zbMATHGoogle Scholar
  6. 6.
    J. M. Mendías, R. Hermida, M. Fernández Correct High-Level Synthesis:a Formal Perspective, in Proc. of Design, Automation and Test in Europe, DATE’ 98.Google Scholar
  7. 7.
    J. M. Mendías, R.Hermida, M. Fernández Formal Techniques for Hardware Allocation, Proc. of 10th International Conference on VLSI Design, VLSI’ 97.Google Scholar
  8. 8.
    R. Poli, W.B. Langdon, On the Search Properties of Different Crossover Operators in Genetic Programming, Genetic Programming 1998: Proceedings of the Third Annual Conference, pages 293–301.Google Scholar
  9. 9.
    T. Weinbrenner, Genetic programming kernel Version 0.5.2 C++Class Library, http://thor.emk.e-thecnik.tu-darmstadt.de/~thomasw/gpkernel1.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Aitor Ibarra
    • 1
  • J. Lanchares
    • 1
  • J. M. Mendias
    • 1
  • J. I. Hidalgo
    • 1
  • R. Hermida
    • 1
  1. 1.Dpto. Arquitectura de Computadores y AutomáticaUniversidad Complutense de Madrid, Facultad de Ciencias Físicas

Personalised recommendations