Advertisement

Grammatical Evolution Rules: The Mod and the Bucket Rule

  • Maarten Keijzer
  • Michael O’Neill
  • Conor Ryan
  • Mike Cattolico
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2278)

Abstract

We present an alternative mapping function called the Bucket Rule, for Grammatical Evolution, that improves upon the standard modulo rule. Grammatical Evolution is applied to a set of standard Genetic Algorithm problem domains using two alternative grammars. Applying GE to GA problems allows us to focus on a simple grammar whose effects are easily analysable. It will be shown that by using the bucket rule a greater degree of grammar independence is achieved.

Keywords

Genetic Program Production Rule Mapping Rule Grammatical Evolution Evaluation Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banzhaf W., Nordin P., Keller R.E., Francone F.D. (1998) Genetic Programming — An Introduction; On the Automatic Evolution of Computer Programs and its Applications. Morgan Kaufmann.Google Scholar
  2. 2.
    Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine Learning, Boston, USA, Addison Wesley, Longman.zbMATHGoogle Scholar
  3. 3.
    Holland, J. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, USA, University of Michigan Press.Google Scholar
  4. 4.
    Keijzer M., Ryan C., O’Neill M., Cattolico M, Babovic V. (2001) Ripple Crossover in Genetic Programming. LNCS 2038, Proc. of the Fourth European Conference on Genetic Programming, Lake Como, Italy, April 2001, pp.74–86. Springer.Google Scholar
  5. 5.
    Koza, J.R. (1992). Genetic Programming. MIT Press.Google Scholar
  6. 6.
    Koza J.R. (1994). Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press.Google Scholar
  7. 7.
    Koza J.R., Andre D., Bennett III F.H., and Keane M. (1999) Genetic Programming III: Darwinian Invention and Problem Solving. Morgan Kaufman.Google Scholar
  8. 8.
    O’Neill M. (2001) Automatic Programming in an Arbitrary language: Evolving Programs with Grammatical Evolution. Ph.D. thesis, University of Limerick, 2001.Google Scholar
  9. 9.
    O’Neill M., Ryan C. (2001) Grammatical Evolution. IEEE Trans. Evolutionary Computation, Vol. 5 No. 4, August 2001.Google Scholar
  10. 10.
    Ryan C., Collins J.J., O’Neill M. (1998). Grammatical Evolution: Evolving Programs for an Arbitrary Language. LNCS 1391, Proc. of the First European Workshop on Genetic Programming, pp. 83–95. Springer-Verlag.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Maarten Keijzer
    • 1
  • Michael O’Neill
    • 2
  • Conor Ryan
    • 3
  • Mike Cattolico
    • 4
  1. 1.Free UniversityAmsterdam
  2. 2.University of LimerickMichael
  3. 3.University of LimerickMichael
  4. 4.Tiger Mountain Scientific Inc.USA

Personalised recommendations