Inelastic Neutron Scattering from Structural Excitations

  • Götz Eckold
Part of the Lecture Notes in Physics book series (LNP, volume 610)


In this lecture, a short overview is given over the characteristic features of inelastic neutron scattering along with some selected applications for the investigation of dynamic processes in condensed matter. Of course, a comprehensive treatment of the entire field of neutron scattering cannot be provided within a single lecture. Hence, I restricted myself on the treatment of structural excitations thereby skipping the important field of magnetic excitations. After some introductory remarks about the role of neutrons in condensed matter research, a brief summary of scattering processes and correlations will be given along with a short review on experimental techniques. The potential of inelastic neutron scattering will be demonstrated with the help of a number of different examples dealing with collective excitations, diffusion processes, tunnelling, polymer dynamics, and kinetic studies. More detailed information about individual aspects of different applications and techniques may be found in the series of lecture notes of summer schools organised by FZ Jülich or PSI, Villigen [1].


Acoustic Phonon Charge Density Wave Phonon Dispersion Inelastic Neutron Inelastic Neutron Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    e.g. Vorlesungsmanuskripte, 27. IFF-Ferienkurs “Streumethoden zur Untersuchung kondensierter Materie”, Forschungszentrum Jülich 1996, ISBN 3-89336-180-4 Lecture Notes, Summer School on Neutron Scattering 1993, PSI-Proceedings 93-01, ISSN 1019-6447.Google Scholar
  2. 2.
    e.g. S.W. Lovesey, Theory of Neutron Scattering From Condensed Matter, Clarendon Press, Oxford 1984, ISBN 0-19-852015-8.Google Scholar
  3. 3.
    L. Pintschovius, N. Pyka, W. Reichardt, A.Y. Rumiantsev, N.L. Mitrofanov, A.S. Ivanov, G. Collin, P. Bourges, Physica C 185–189, 156 (1991).CrossRefGoogle Scholar
  4. 4.
    J.C. Marmeggi, R. Currat, A. Bouvet, G.H. Lander, Physica B 263–264, 624 (1999) and ILL Annual Report 98, p. 16.CrossRefGoogle Scholar
  5. 5.
    S. Klotz, J.M. Besson, M. Braden, J. Kulda, Annual Report, ILL 1998, p. 44.Google Scholar
  6. 6.
    J. Texeira, M.C. Bellisent-Funel, S.H. Chen, A.J. Dianoux, Phys.Rev. A 31, 1913 (1985).CrossRefADSGoogle Scholar
  7. 7.
    H. Jobic, M. Bée, Annual Report, ILL 1997, p. 16.Google Scholar
  8. 8.
    W. Press, A. Kollmar, Solid State Commun. 17, 405 (1975).CrossRefADSGoogle Scholar
  9. 9.
    A. Heidemann, W. Press, K.J. Lushington, J.A. Morrison, J. Chem. Phys. 75, 4003 (1981).CrossRefADSGoogle Scholar
  10. 10.
    M. Prager, Da Zhang, A. Weiss, Physica B 180–181, 671 (1992).CrossRefGoogle Scholar
  11. 11.
    F. Mezei (ed.), “Neutron Spin Echo”, Lecture Notes in Physics, Springer, Berlin 1980.Google Scholar
  12. 12.
    e.g. M. Köppe, M. Bleuel, R. Gähler, R. Golub, P. Hank, T. Keller, S. Longeville, U. Rauch, J. Wuttke, Physica B 266, 75 (1999).CrossRefADSGoogle Scholar
  13. 13.
    P.G. de Gennes, J. Physique 42, 735 (1981).CrossRefGoogle Scholar
  14. 14.
    P. Schleger, B. Farago, C. Lartigue, A. Kollmar, D. Richter, Phys. Rev.Lett. 81, 124 (1998); Annual Report, ILL 1998, p. 68.CrossRefADSGoogle Scholar
  15. 15.
    G. Eckold, Nucl. Instr. & Methods A 289, 221 (1990).CrossRefADSGoogle Scholar
  16. 16.
    P. Elter, G. Eckold, D. Caspary, F. Güthoff, A. Hoser, Appl. Phys. A, in press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Götz Eckold
    • 1
  1. 1.Institut für Physikalische ChemieUniversität GöttingenGermany

Personalised recommendations