Advertisement

Average Structure vs. Real Structure: Molecular Dynamics Studies of Silica

  • Martin H. Müser
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 610)

Abstract

The microscopic structure of a crystal and thermal fluctuations of the atoms constituting the crystal are intimately connected with the macroscopic elastic properties including mechanical stability. In some cases, however, the picture is more complex than that which is drawn in text books on solid state physics. (i) The instantaneous microscopic structure can deviate in a non-Gaussian way from the average structure even when domain disorder and/or crystal defects are absent. Quasi harmonic approximations may then turn out to be meaningless. (ii) The crystal is subject to external pressures that are sufficiently large in order to render the definition of elastic constants non unique. These two points are discussed exemplarily in the context of the high-temperature and the high-pressure phases of quartz. In particular, it is discussed how to observe and how to classify non-Gaussian disorder in molecular dynamics (MD) simulations and how to evaluate mechanical stability of solids under pressure. Some details are given on the calculation of thermal, mechanical, and structural properties of solids, also for temperatures far below their Debye temperature.

Keywords

Elastic Constant Radial Distribution Function Harmonic Approximation Simulation Cell Landau Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen and Tildesley 1987. Allen M. P. and Tildesley D. J. (1987) Computer Simulations of Liquids. (Clarendon Press, Oxford).Google Scholar
  2. Axe and Shirane 1970. Axe J. C. and Shirane G. (1970) Study of the α-β phase transformation by inelastic bneutron scattering. Phys Rev. B 1: 342–348.CrossRefADSGoogle Scholar
  3. Barker 1979. Barker J. A. (1979) A quantum-statistical Monte Carlo method; path integrals with boundary conditions, J. Chem. Phys. 70, 2914–2918.CrossRefADSGoogle Scholar
  4. Binder 1981. Binder K. (1981) Critical properties from Monte Carlo: Coarse graining and renormalization. Phys. Rev. Lett. 47: 693–696.CrossRefADSGoogle Scholar
  5. Binder and Stauffer 1987. Binder K. and Stauffer D. (1987) in Applications of the Monte Carlo Method in Statistical Physics, edited by K. Binder (Springer, Berlin).Google Scholar
  6. Binggeli and Chelikowsky 1992. Binggeli N. and Chelikowsky J. R. (1992) Elastic instability in α-quartz under pressure. Phys. Rev. Lett. 69, 2220–2223.CrossRefADSGoogle Scholar
  7. Carpenter et al. 1998. Carpenter MA, Salje EKH, Graeme-Barber A, Wrucki B, Dove MT, and Knight KS (1998) Calibration of excess thermodynamic properties and elastic constant variations associated with the αβ phase transition in quartz. Am. Mineral. 83: 2–22.Google Scholar
  8. Demuth et al. 1999. Demuth T., Jeanvoine Y., Hafner J., and Angyan J. G. (1999) Polymorphism in silica studied in the local density and generalized-gradient approximation. J. Phys.: Condens. Matter 11: 3833–3874.CrossRefADSGoogle Scholar
  9. Dolino 1990. Dolino G. (1990) The α-inc-β phase transition of quartz: A century of research on displacive phase transitions. Phase Transitions 21: 59–72.CrossRefGoogle Scholar
  10. Dove et al. 1997. Dove M. T., Kreen D. A., Hannon A. C., and Swainson IP (1997) Direct measurement of the Si-O bond length and orientational disorder in the high-temperature phase of cristobalite. Phys. Chem. Minerals 24: 311–317.CrossRefADSGoogle Scholar
  11. Dove et al. 1999. Dove M. T., Gambhir M., Heine V. (1999) Anatomy of a structural phase transition: theoretical analysis of the displacive phase transition in quartz and other silicates. Phys. Chem. Minerals 26: 344–353.CrossRefADSGoogle Scholar
  12. Feynman and Hibbs 1965. Feynman R. P. and Hibbs A. R. (1965) Quantum Mechanics and Path Integrals. (Mc.Graw-Hill, New York).zbMATHGoogle Scholar
  13. Frenkel and Smit 1996. Frenkel D. and Smit B. (1996) Understanding Molecular Simulation: From Algorithms to Applications. (Academic Press, San Diego).zbMATHGoogle Scholar
  14. Gregoryanz et al. 2000. Gregoryanz E., Hemley R. J., Mao H. K., Gillet P. (2000) High-pressure elasticity of α-quartz: Instability and ferroelastic transition. Phys. Rev. Lett. 84: 3117–3120.CrossRefADSGoogle Scholar
  15. Heaney, Prewitt, and Gibbs 1994. Heaney P. J., Prewitt C. T., and Gibbs G. V. (Eds.) (1994) Silica. Physical behavior, geochemistry, and materials applications. (Mineralogical Society of America, Washington, D.C.).Google Scholar
  16. Kihara 1990. Kihara K. (1990) An X-ray study of the temperature dependence of the quartz structure. Eur. J. Mineral. 2: 63–77.Google Scholar
  17. Kingma et al. 1993. Kingma K. J., Hemley R. J., Mao H. K., and Veblen D. R. (1993) New high-pressure transformation in α-quartz. Phys. Rev. Lett. 70, 3927–3930.CrossRefADSGoogle Scholar
  18. Landau and Binder 2000. Landau D.P. and Binder K. (2000) A guide to Monte Carlo simulations in statistical physics. (Cambridge University Press, Cambridge).zbMATHGoogle Scholar
  19. Martonak et al. 1998. Martonak R., Paul W., and Binder K. (1998) Orthorhombic phase of crystalline polyethylene: A constant pressure path-integral Monte Carlo study. Phys. Rev. E 57, 2425–2437 (1998).CrossRefADSGoogle Scholar
  20. Müser et al. 1995. Müser M. H., P. Nielaba, and K. Binder (1995) Path-integral Monte Carlo of crystalline Lennard-Jones systems, Phys. Rev. B 51, 2723–2731 (1995).CrossRefADSGoogle Scholar
  21. Müser 2001. Müser M. H. (2001) Simulation of material properties below the Debye temperature: A path-integral molecular dynamics case study of quartz. J. Chem. Phys. 114, 6364–6370.CrossRefADSGoogle Scholar
  22. Müser and Binder 2001. Müser M. H. and Binder K. (2001) Molecular dynamics study of the α-α transition in quartz: Elastic properties, finite size effects, and hysteresis in the local structure. Phys. Chem. Min. 28, 746–755.CrossRefADSGoogle Scholar
  23. Müser and Schöffel 2001. Müser M. H. and Schöffel P. (2001) Comment on: High-pressure elasticity of α-quartz: Instability and ferroelastic transition. condmat/0009353.Google Scholar
  24. Parrinello and Rahman 1980. Parrinello M. and Rahman A. (1980) Crystal structure and pair potentials: A molecular-dynamics study. Phys. Rev. Lett. 45, 1196–1199.CrossRefADSGoogle Scholar
  25. Parrinello and Rahman 1981. Parrinello M. and Rahman A. (1981) Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52, 7182–7190.CrossRefADSGoogle Scholar
  26. Parrinello and Rahman 1982. Parrinello M. and Rahman A. (1982) Strain fluctuations and elastic constants. J. Chem. Phys. 76, 2662–2666.CrossRefADSGoogle Scholar
  27. Rickwardt et al. 2001. Rickwardt Chr., Nielaba P., Müser, and Binder K. (2001) Path integral Monte Carlo simulation of silicates. Phys. Rev. B 63, 045204 (2001).CrossRefADSGoogle Scholar
  28. Salje et al. 1992. Salje E. K. H., Ridgwell A., Güttler B., Wruck B., Dove M. T., and Dolino G. (1992). On the displacive character of the phase transition in quartz: A hard mode spectroscopic study. J. Phys.: Condens. Matter 4: 571–577.CrossRefADSGoogle Scholar
  29. Schneider and Stoll 1978. Schneider T. and Stoll E. (1978) Molecular dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys. Rev. B 17, 1302–1322.CrossRefADSGoogle Scholar
  30. Schöffel and Müser 2001. Schöffel P. and Müser M. H. (2001), Elastic constants of quantum solids by path integral simulations, Phys. Rev. B 63(22), 4108-1–4108-9.CrossRefGoogle Scholar
  31. Spearing et al. 1992. Spearing D. R., Farnan I., and Stebbins J. F. (1992) Dynamics of the α-β transition in quartz and cristobalite as observed by in-situ high temperature 29Si and 17O NMR. Phys. Chem. Min. 19: 307–321.CrossRefADSGoogle Scholar
  32. Striefler and Barsch 1975. Striefler M. E. and G. R. Barsch G. R., Phys. Rev. B 12, 4553 (1975).CrossRefADSGoogle Scholar
  33. Tezuka et al. 1991. Tezuka Y., Shin S., and Ishigame M. (1991) Observation of the silent soft phonon in β-quartz by means of hyper-Raman scattering. Phys. Rev. Lett. 66: 2356–2359.CrossRefADSGoogle Scholar
  34. Tse and Klug 1991. Tse J. S. and Klug D. D. (1991) The structure and dynamics of silica polymorphs using a two-body effective potential. J. Chem. Phys. 95, 9176–9185.CrossRefADSGoogle Scholar
  35. Tse, Klug and Le Page (1992). Tse J. S., Klug D. D., and Y. Le Page Y. (1992) High-pressure densification of amorphous silica. Phys. Rev. Lett. 69, 3647.CrossRefADSGoogle Scholar
  36. Tsuneyuki et al. 1988. Tsuneyuki S., Tsukada M., Aoki H., and Matsui Y. (1988) First principles interatomic potential of silica applied to molecular dynamics. Phys. Rev. Lett. 61: 869–872.CrossRefADSGoogle Scholar
  37. Tsuneyuki et al. 1990. Tsuneyuki S., Aoki H., and Tsukada M., (1990) Molecular-dynamics study of the α to β structural phase transition in quartz. Phys. Rev. Lett. 64: 776–779.CrossRefADSGoogle Scholar
  38. Tucker et al. 2000. Tucker M. G., Dove M. T., Keen, D. A. (2000) Simultaneous analysis of changes in long-range and short-range structural order at the displacive phase transition in quartz. J. Phys.: Condens. Matter 12: L723–L730.CrossRefADSGoogle Scholar
  39. Tuckerman et al. 1993. Tuckermann M. E., Berne B. J., Martyna G. J., and Klein M. L. (1993) Efficient molecular dynamics and hybrid Monte Carlo algorithms for path integrals. J. Chem. Phys. 99, 2796–2808.CrossRefADSGoogle Scholar
  40. van Beest, Kramer, and van Santen 1990. van Beest B., Kramer G., and van Santen (1990) Force fields for silicas and aluminophosphates based on ab initio calculations. Phys. Rev. Lett. 64, 1955–1958.CrossRefADSGoogle Scholar
  41. Vollmayr et al. 1993. Vollmayr K., Reger J. D., Scheucher M., and Binder K. (1993) Finite size effects at thermally-driven first order phase transitions: A phenomenological theory of the order parameter distribution. Z. Phys. B 91: 113.CrossRefADSGoogle Scholar
  42. Wallace 1971. Wallace D. C., in Solid State Physics 25, ed. H. Ehrenreich, F. Seitz, and D. Turnbull (Academic Press, New York, 1971); Thermodynamics of Crystals (Wiley, New York, 1972).Google Scholar
  43. Wang et al. 1993. Wang J., Yip S., Phillpot S. R., and Wolf D. (1993) Crystal instabilities at finite strain. Phys. Rev. Lett. 71, 4182–4185.CrossRefADSGoogle Scholar
  44. Wright and Lehman 1981. Wright A. F. and Lehmann M. S. (1981) The structure of quartz at 25 and 590°C determined by neutron diffraction. J. Solid State Chem. 36: 372–380.CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Martin H. Müser
    • 1
  1. 1.Institut für PhysikJohannes Gutenberg-Universität MainzGermany

Personalised recommendations