Advertisement

The One- and Two-Body Densities of Crystalline Matter and Bragg and Diffuse Scattering of Neutrons and X-Rays

  • Klaus A. Gernoth
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 610)

Abstract

This work presents a theoretical treatment of the Bragg and diffuse scattering of an incident double-beam of neutrons or X-rays from crystalline matter. The incoming double-beam is a linear superposition of two plane waves with the same energy. It is shown that the total Bragg plus diffuse scattering differential cross section is a sum of terms stemming from the scattering of the two individual plane waves in the incoming double-beam and of terms originating in the interference of the scattering of the two superimposed incident plane waves. The leading-order dominant Bragg peaks in the total differential cross section are size-extensive and depend on the lattice Fourier transform of the one-body density of the scattering material. It is proven that the Bragg peaks are a consequence of the long-range behavior of the two-body density for large interparticle distances. The diffuse background scattering contributions in the total differential cross section for the scattering of a double-beam depend on the lattice Fourier transform of the one-body density and, more importantly, on the continuous Fourier transform of the (discrete) lattice Fourier transform of the two-body density of the scatterer, which latter transform is a function of the relative position vector of the two particles. One of the most significant conclusions from these findings is that the full two-body density of a crystalline material is experimentally accessible by means of the diffuse background scattering of a double-beam of neutrons or X-rays in which the difference of the two wave number vectors in the incoming two-beam is a reciprocal lattice vector of the scattering crystal. This paper deals also with the crystallographic symmetries in the Bragg and the diffuse scattering structure functions. Based on results of previous research, it is found that both scattering structure functions follow exactly the same crystallographic symmetry patterns as the lattice Fourier transform functions of the two-body density do. The formal theory of Bragg and diffuse scattering of a neutron or X-ray two-beam derived here may be readily related to previous and ongoing exact numerical Monte Carlo calculations of the spatial microstructure of crystals, in which the local one- and two-body densities are computed by means of exact group-theoretical Fourier path integral Monte Carlo simulations.

Keywords

Reciprocal Lattice Vector Space Group Symmetry Crystallographic Symmetry Crystalline Matter Primitive Unit Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. A. Gernoth, in “Proceedings of the 165. WE-Heraeus-Seminar, Theory of Spin Lattices and Lattice Gauge Models” (J. W. Clark and M. L. Ristig, Eds.), Lecture Notes in Physics, Vol. 494, p. 84, Springer-Verlag, Berlin, 1997.CrossRefGoogle Scholar
  2. 2.
    K. A. Gernoth, in “Condensed Matter Theories” (J. W. Clark and P. V. Panat, Eds.), Vol. 12, p. 331, Nova Science, Commack, NY, 1997.Google Scholar
  3. 3.
    K. A. Gernoth, Ann. Phys. (NY) 285 (2000), 61.zbMATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    K. A. Gernoth, Ann. Phys. (NY) 291 (2001), 202.zbMATHCrossRefADSGoogle Scholar
  5. 5.
    K. A. Gernoth, in “150 Years of Quantum Many-Body Theory” (R. F. Bishop, K. A. Gernoth, and N. R. Walet, Eds.), Series on Advances in Quantum-Many-Body Theory, Vol. 5., p. 249, World Scientific, Singapore, 2001.Google Scholar
  6. 6.
    K. A. Gernoth, J. Low Temp. Phys. 126 (2002), 725.CrossRefGoogle Scholar
  7. 7.
    J. C. Tolédano and P. Tolédano, “The Landau Theory of Phase Transitions,” World Scientific, Singapore, 1987.Google Scholar
  8. 8.
    L. D. Landau, “Collected Papers” (D. ter Haar, Ed.), 1st ed., p. 193, Pergamon, Oxford, 1965.Google Scholar
  9. 9.
    V. Apaja, J. Halinen, and M. Saarela, J. Low Temp. Phys. 113 (1998), 909.CrossRefGoogle Scholar
  10. 10.
    J. Halinen, V. Apaja, K. A. Gernoth, and M. Saarela, J. Low Temp. Phys. 121 (2000), 531.CrossRefGoogle Scholar
  11. 11.
    F. Pederiva, S. A. Vitiello, K. A. Gernoth, S. Fantoni, and L. Reatto, Phys. Rev. B 53 (1996), 15129.CrossRefADSGoogle Scholar
  12. 12.
    K. A. Gernoth, in “Condensed Matter Theories” (D. J. Ernst, I. E. Perakis, and A. S. Umar, Eds.), Vol. 14, p. 461, Nova Science, Huntington, NY, 2000.Google Scholar
  13. 13.
    D. J. J. Farnell, R. F. Bishop, and K. A. Gernoth, Phys. Rev. B 63 (2001), 220402–1.CrossRefADSGoogle Scholar
  14. 14.
    D. J. J. Farnell, K. A. Gernoth, and R. F. Bishop, Phys. Rev. B 64 (2001), 172409–1.CrossRefADSGoogle Scholar
  15. 15.
    D. J. J. Farnell, R. F. Bishop, and K. A. Gernoth J. Stat. Phys. (2002), in press.Google Scholar
  16. 16.
    D. N. Timms, A. C. Evans, M. Boninsegni, D. M. Ceperley, J. Meyers, and R. O. Simmons, J. Phys.: Condens. Matter 8 (1996), 6665.CrossRefADSGoogle Scholar
  17. 17.
    D. A. Peek and R. O. Simmons, J. Chem. Phys. 94 (1991), 3169.CrossRefADSGoogle Scholar
  18. 18.
    D. A. Peek, M. C. Schmidt, I. Fujita, and R. O. Simmons, Phys. Rev. B 45 (1992), 9671.CrossRefADSGoogle Scholar
  19. 19.
    D. A. Peek, M. C. Schmidt, I. Fujita, and R. O. Simmons, Phys. Rev. B 45 (1992), 9680.CrossRefADSGoogle Scholar
  20. 20.
    S. W. Lovesey, “Theory of Neutron Scattering from Condensed Matter,” Vol. 1, Clarendon Press, Oxford, 1984.Google Scholar
  21. 21.
    J. F. Cornwell, “Group Theory in Physics,” Vol. I, 5th ed., Academic Press, London, 1994.Google Scholar
  22. 22.
    G. Burns and A. M. Glazer, “Space Groups for Solid State Scientists,” 2nd ed., Academic Press, Boston, 1990.Google Scholar
  23. 23.
    “International Tables for Crystallography” (A. J. C. Wilson, Ed.), Vol. C, Kluwer Academic, Dordrecht, 1995.Google Scholar
  24. 24.
    “International Tables for Crystallography” (T. Hahn, Ed.), Vol. A, 4th Ed., Kluwer Academic, Dordrecht, 1996.Google Scholar
  25. 25.
    “International Tables for Crystallography” (U. Shmueli, Ed.), Vol. B, Kluwer Academic, Dordrecht, 1996.Google Scholar
  26. 26.
    W. Bauspiess, U. Bonse, W. Graeff, and H. Rauch, J. Appl. Cryst. 10 (1977), 338.CrossRefGoogle Scholar
  27. 27.
    U. Bonse, in “Neutron Interferometry” (U. Bonse and H. Rauch, Eds.), p. 3, Clarendon Press, Oxford, 1979.Google Scholar
  28. 28.
    H. Rauch, in “Neutron Interferometry” (U. Bonse and H. Rauch, Eds.), p. 161, Clarendon Press, Oxford, 1979.Google Scholar
  29. 29.
    W. Schülke, U. Bonse, and S. Mourikis, Phys. Rev. Lett. 47 (1981), 1209.CrossRefADSGoogle Scholar
  30. 30.
    W. Schülke, Solid State Commun. 43 (1982), 863; Erratum: Solid State Commun. 44 (1982), 1130.CrossRefADSGoogle Scholar
  31. 31.
    G. Materlik, and J. Zegenhagen, Phys. Lett. A 104 (1984), 47.CrossRefADSGoogle Scholar
  32. 32.
    H. Spalt, A. Zounek, B. N. Dev, and G. Materlik, Phys. Rev. Lett. 60 (1988), 1868.CrossRefADSGoogle Scholar
  33. 33.
    U. Bonse, Physica B 151 (1988), 7.CrossRefGoogle Scholar
  34. 34.
    W. Schülke and A. Kaprolat, Phys. Rev. Lett. 67 (1991), 879.CrossRefADSGoogle Scholar
  35. 35.
    H. Rauch and S. A. Werner, “Neutron Interferometry: Lessons in Experimental Quantum Mechanics”, Clarendon Press, Oxford, 2000.Google Scholar
  36. 36.
    A. P. Jephcoat, H. K. Mao, L. W. Finger, D. E. Cox, R. J. Hemley, and C. S. Zha, Phys. Rev. Lett. 59 (1987), 2670.CrossRefADSGoogle Scholar
  37. 37.
    H. K. Mao, R. J. Hemley, Y. Wu, A. P. Jephcoat, L. W. Finger, C. S. Zha, and W. A. Bassett, Phys. Rev. Let. 60 (1988), 2649.CrossRefADSGoogle Scholar
  38. 38.
    P. Loubeyre, R. LeToullec, J. P. Pinceaux, H. K. Mao, J. Hu, and R. J. Hemley, Phys. Rev. Lett. 71 (1993), 2272.CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Klaus A. Gernoth
    • 1
  1. 1.Department of PhysicsUMISTManchesterUK

Personalised recommendations