Advertisement

Singular Eigenfunctions and an Integral Transform for Shear Flow

  • Philip J. Morrison
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 586)

Abstract

Euler’s equation linearized about a shear flow equilibrium is solved by means of a novel invertible integral transform that is a generalization of the Hilbert transform. The integral transform provides a means for describing the dynamics of the continuous spectrum that is well-known to occur in this and other systems. The results are interpreted briefly in the context of infinite dimensional Hamiltonian systems theory, which serves as a unifying principle.

Keywords

Shear Flow Continuous Spectrum Integral Transform Linear Dynamic Hamiltonian Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N.J. Balmforth and P.J. Morrison: ‘Singular eigenfunctions for shearing fluids I’. Institute for Fusion Studies, University of Texas, Austin, Report No. 692 (1995). Available as NTIS document DE95008952INZ. See http://www.ntis.gov. CrossRefGoogle Scholar
  2. 2.
    N.J. Balmforth and P.J. Morrison: Stud. Appl. Math. 102, 309 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    N.J. Balmforth and P.J. Morrison: ‘Hamiltonian Description of Shear Flow’. In Large-Scale Atmosphere-Ocean Dynamics I +II. ed. by J. Norbury and I. Roulstone (Cambridge, Cambridge 2002) pp. 117–142Google Scholar
  4. 4.
    K.M. Case: Phys. Fluids 3, 143 (1960)CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    P.G. Drazin and L.N. Howard: Adv. in Appl. Mech. 9, 1 (1966)CrossRefGoogle Scholar
  6. 6.
    D.G. Ebin and J.E. Marsden: Ann. Math. 92, 102 (1970)CrossRefMathSciNetGoogle Scholar
  7. 7.
    L. Engevik: ‘On the stability problem in hydrodynamics’. Dept. Applied Math. Bergen, Norway, Pub. No. 11 (1966).Google Scholar
  8. 8.
    I.M. Gel’fand: Generalized Functions (Academic, New York 1964)Google Scholar
  9. 9.
    L.P.J. Kamp: J. Phys. A: Math. Gen. 24, 2029 (1991)zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    K.L. Kowalski and D. Feldman: J. Math. Phys. 2, 499 (1961)zbMATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    P.J. Morrison: Rev. Mod. Phys. 70, 467(1998)CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    P.J. Morrison: Trans. Theory Stat. Phys. 29, 397(2000)zbMATHMathSciNetCrossRefADSGoogle Scholar
  13. 13.
    P.J. Morrison and J.M. Greene: Phys. Rev. Lett. 45, 790 (1980)CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    P.J. Morrison and D. Pfirsch: Phys. Fluids B 4, 303 (1992)CrossRefMathSciNetGoogle Scholar
  15. 15.
    P.J. Morrison and B. Shadwick: Acta Phys. Pol. 85, 759 (1994)MathSciNetGoogle Scholar
  16. 16.
    J.W.S. Rayleigh: Theory of Sound (Macmillan, London 1896) Art. 369zbMATHGoogle Scholar
  17. 17.
    S.I. Rosencrans and D.H. Sattinger: J. Math. Phys. 45, 289 (1966)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Z. Sedláček: J. Plasma Phys. 6, 187(1971)CrossRefADSGoogle Scholar
  19. 19.
    E.M. Stein and G. Weiss: Introduction to Fourier Analysis on Euclidean Spaces (Princeton, New Jersey 1971)zbMATHGoogle Scholar
  20. 20.
    S.A. Stepin: Izvestiya: Math. 60, 1293 (1996)zbMATHCrossRefMathSciNetADSGoogle Scholar
  21. 21.
    E.C. Titchmarsh: Introduction to the Theory of Fourier Integrals (Clarendon, Oxford 1937)zbMATHGoogle Scholar
  22. 22.
    N.G. Van Kampen: Physica 21, 949 (1955)CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Philip J. Morrison
    • 1
  1. 1.Department of Physics and Institute for Fusion StudiesThe University of TexasAustinUSA

Personalised recommendations