Advertisement

Nonlinear Acoustics and Acoustic Chaos

  • Werner Lauterborn
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 586)

Abstract

The very basic standard elements of nonlinear acoustics are presented: The origin of nonlinearity, equations of state, simple nonlinear waves and shock wave formation. Sonoluminescence is chosen as a modern example of nonlinear acoustics. Some notations from nonlinear dynamics are introduced needed for understanding chaotic dynamics and acoustic chaotic systems.

Keywords

Shock Wave Lyapunov Exponent Chaotic Dynamic Sound Wave Nonlinear Acoustics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.B. Whitham: Linear and Nonlinear Waves (Wiley, London 1974)zbMATHGoogle Scholar
  2. 2.
    M.F. Hamilton, D.T. Blackstock, eds.: Nonlinear Acoustics (Academic Press, San Diego 1998)Google Scholar
  3. 3.
    R.T. Beyer: Nonlinear Acoustics (Acoustical Society of America, Woodbury 1997)Google Scholar
  4. 4.
    L.D. Rozenberg, ed.: High-Intensity Ultrasonic Fields (PlenumPress, New York 1971)Google Scholar
  5. 5.
    O.V. Rudenko, S.I. Soluyan: Theoretical Foundations of Nonlinear Acoustics (Consultants Bureau, London 1977)zbMATHGoogle Scholar
  6. 6.
    N.S. Bakhvalov, Y.M. Zhileikin, E.A. Zabolotskaya: Nonlinear Theory of Sound Beams (Am. Inst. Physics, Melville 1987)Google Scholar
  7. 7.
    M.F. Hamilton, D.T. Blackstock, eds.: Frontiers of Nonlinear Acoustics (Elsevier, London 1990)zbMATHGoogle Scholar
  8. 8.
    H. Hobaek, ed.: Advances in Nonlinear Acoustics (World Scientific, Singapore 1993)Google Scholar
  9. 9.
    R.J. Wei: Nonlinear Acoustics in Perspective (Nanjing University Press, Nanjing 1996)Google Scholar
  10. 10.
    W. Lauterborn, T. Kurz, eds.: Nonlinear Acoustics at the Turn of the Millennium (Am. Inst. Physics, Melville 2000)Google Scholar
  11. 11.
    S. Makarov, M. Ochmann: Acustica 82, 579 (1996) 83, 197 (1997) 83, 827 (1997)zbMATHGoogle Scholar
  12. 12.
    W. Lauterborn, U. Parlitz: J. Acoust. Soc. Am. 84, 1975 (1988)CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    C.D. Ohl, A. Philipp, W. Lauterborn: Ann. Physik 4, 26 (1995)CrossRefADSGoogle Scholar
  14. 14.
    C. E. Brennen: Cavitation and Bubble Dynamics (Oxford University Press, Oxford 1995)Google Scholar
  15. 15.
    T.G. Leighton: The Acoustic Bubble (Academic Press, London 1994)Google Scholar
  16. 16.
    J.R. Blake, J. M. Boulton-Stone, and N. H. Thomas, eds.: Bubble Dynamics and Interface Phenomena (Kluwer, Dordrecht 1994)zbMATHGoogle Scholar
  17. 17.
    F. R. Young: Cavitation (McGraw-Hill, London 1989)Google Scholar
  18. 18.
    K.S. Suslick, ed.: Ultrasound: Its Chemical, Physical and Biological Effects (VCH Publishers, New York 1988)Google Scholar
  19. 19.
    L. van Wijngaarden, ed.: Mechanics and Physics of Bubbles in Liquids (Martinus Nijho. Publishers, The Hague 1982)Google Scholar
  20. 20.
    W. Lauterborn, ed.: Cavitation and Inhomogeneities in Underwater Acoustics (Springer, Berlin 1980)Google Scholar
  21. 21.
    E.A. Neppiras: Physics Reports 61, 159 (1980)CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    H.G. Flynn: ‘Physics of acoustic cavitation’. In: Physical Acoustics, ed. by W.P. Mason (Academic Press, New York 1964) pp. 57–172Google Scholar
  23. 23.
    D.F. Gaitan, L.A. Crum, C.C. Church, R.A. Roy: J. Acoust. Soc. Am. 91, 3166–3183 (1992)CrossRefADSGoogle Scholar
  24. 24.
    Y. Tian, J.A. Ketterling, and R.E. Apfel: J. Acoust. Soc. Am. 100, 3976–3978 (1996)CrossRefADSGoogle Scholar
  25. 25.
    W. Lauterborn, T. Kurz, R. Mettin, C.D. Ohl: Advances in Chemical Physics 110, 295 (1999)CrossRefGoogle Scholar
  26. 26.
    E. Heim: ‘Über das Zustandekommen der Sonolumineszenz’. In: Proceedings of the Third International Congress on Acoustics, Stuttgart, 1959, ed. by L. Cremer (Elsevier, Amsterdam 1961) pp. 343–346Google Scholar
  27. 27.
    C.C. Wu, P.H. Roberts: Proc. Roy. Soc. Lond. A 445, 323–349 (1994)ADSCrossRefGoogle Scholar
  28. 28.
    W.C. Moss, D.B. Clarke, and D.A. Young: Science 276, 1398–1401 (1997)CrossRefGoogle Scholar
  29. 29.
    V.Q. Vuong, A.J. Szeri, D.A. Young: Phys. Fluids 11, 10 (1999)CrossRefADSzbMATHGoogle Scholar
  30. 30.
    B. Metten, T. Kurz, W. Lauterborn: ‘Molecular dynamics simulation versus continuum mechanics for a sonoluminescing bubble’. In: Modelling Collective Phenomena in Complex Systems, ed. by P.L. Garrido, J. Marro, R. Toral, Europhysics Conference Abstracts 22, 268–269 (1998)Google Scholar
  31. 31.
    B. Metten, W. Lauterborn: ‘Molecular dynamics approach to single-bubble sonoluminescence’. In: Nonlinear Acoustics at the Turn of the Millennium, ed. by W. Lauterborn, T. Kurz (Am. Inst. Physics, Melville 2000) pp. 429–432Google Scholar
  32. 32.
    B. Metten: Molekulardynamik-Simulationen zur Sonolumineszenz. PhD Thesis, Georg-August Universität, Göttingen (2000)Google Scholar
  33. 33.
    W. Lauterborn, T. Kurz, U. Parlitz: Int. J. Bifurcation and Chaos 7, 2003 (1997)zbMATHCrossRefGoogle Scholar
  34. 34.
    N.H. Packard, J.P. Crutchfield, J.D. Farmer, R.S. Shaw: Phys. Rev. Lett. 45, 712 (1980)CrossRefADSGoogle Scholar
  35. 35.
    F. Takens: ‘Detecting strange attractors in turbulence’. In: Dynamical Systems and Turbulence, ed. by D.A. Rand, L.S. Young (Springer, Berlin 1981) pp. 366–381CrossRefGoogle Scholar
  36. 36.
    H.D.I. Abarbanel: Analysis of Observed Chaotic Data (Springer, New York 1996)zbMATHGoogle Scholar
  37. 37.
    H. Kantz, T. Schreiber: Nonlinear Time Series Ananlysis (Cambridge University Press, Cambridge 1997)Google Scholar
  38. 38.
    U. Parlitz: ‘Nonlinear Time Serie Analysis’. In: Nonlinear Modeling—Advanced Black Box Techniques, ed. by J.A.K. Suykens, J. Vandewalle (Kluwer Academic Publishers, Dordrecht 1998) pp. 209–239Google Scholar
  39. 39.
    A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano: Physica D 16, 285 (1985)zbMATHCrossRefADSMathSciNetGoogle Scholar
  40. 40.
    W. Lauterborn, E. Cramer: Phys. Rev. Lett. 47, 1445 (1981)CrossRefADSGoogle Scholar
  41. 41.
    W. Lauterborn, J. Holzfuss: Int. J. Bifurcation and Chaos 1, 13 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    W. Lauterborn, A. Koch: Phys. Rev. A 35, 1774 (1987)CrossRefADSGoogle Scholar
  43. 43.
    S. Luther, M. Sushchik, U. Parlitz, I. Akhatov, W. Lauterborn: ‘Is cavitation noise governed by a low-dimensional chaotic attractor?’. In: Nonlinear Acoustics at the Turn of the Millennium, ed. by W. Lauterborn, T. Kurz (Am. Inst. Physics, Melville 2000) pp. 355–358Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Werner Lauterborn
    • 1
  1. 1.Georg-August-Universität GöttingenDrittes Physikalisches InstitutGöttingenDeutschland

Personalised recommendations