A Primitive Approach to Aeroacoustics

  • Avraham Hirschberg
  • Christophe Schram
Part of the Lecture Notes in Physics book series (LNP, volume 586)


A primitive approach to aeroacoustics is presented using the aeroacoustic analogies. This aproach is illustrated by a few examples like musical instruments, the Rijke tube, speech production etc.


Sound Source Strouhal Number Acoustical Energy Acoustical Velocity Sound Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.K. Batchelor: An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge 1967)zbMATHGoogle Scholar
  2. 2.
    W.K. Blake, A. Powell: ‘The development of contemporary views of flow-tone generation’. In: Recent Advances in Aeroacoustics, ed. by A. Krothapalli and C.A. Smith (Springer-Verlag, NY 1986) pp. 248–325Google Scholar
  3. 3.
    J.C. Bruggeman, A. Hirschberg, M.E.H. van Dongen, A.P.J. Wijnands: J. Sound Vib. 150(3), 371–393 (1991)CrossRefADSGoogle Scholar
  4. 4.
    D.G. Crighton, A.P. Dowling, J.E. Ffowcs Williams, M. Heckl, F.G. Leppington: Modern Methods in Analytical Acoustics (Springer-Verlag, London 1992)Google Scholar
  5. 5.
    N. Curle: Proc. Roy. Soc. (London) Ser. A 264, 321–342 (1969)Google Scholar
  6. 6.
    P.E. Doak: Acoust Phys 44, 677–685 (1995)ADSGoogle Scholar
  7. 7.
    A.P. Dowling and J.E. Ffowcs Williams: Sound and Sources of Sound (Ellis Horwood, Chichester 1983)zbMATHGoogle Scholar
  8. 8.
    A.T. Fedorchenko: J. Sound Vib. 232(4), 719–782 (2000)CrossRefADSGoogle Scholar
  9. 9.
    N.H. Fletcher and T.D. Rossing: The Physics of Musical Instruments 2nd edn. (Springer, New York 1998)zbMATHGoogle Scholar
  10. 10.
    M.E. Goldstein: Aeroacoustics (McGraw Hill, New York 1976)zbMATHGoogle Scholar
  11. 11.
    M.A. Heckl: J. Sound Vib. 124, 117–133 (1988)ADSCrossRefGoogle Scholar
  12. 12.
    W.G. Hill Jr., P.R. Greene: Trans. ASME J. Fluids Eng. 99(3), 520–525 (1977)ADSCrossRefGoogle Scholar
  13. 13.
    A. Hirschberg, J.C. Bruggeman, A.P.J. Wijnands, N. Smits: Acustica 68, 157–160 (1989)Google Scholar
  14. 14.
    G.C.J. Hofmans: Vortex Sound in Confined Flows. PhD Thesis, Technische Universiteit Eindhoven, Eindhoven (1998)Google Scholar
  15. 15.
    M.S. Howe: J. Sound Vib. 70, 407–411 (1980)zbMATHCrossRefADSGoogle Scholar
  16. 16.
    M.S. Howe: I.M.A. J. Appl. Math. 32, 187–203 (1984)zbMATHCrossRefGoogle Scholar
  17. 17.
    M.S. Howe: Acoustics of Fluid-Structure Interactions (Cambridge University Press, Cambridge 1998)Google Scholar
  18. 18.
    A.K.M.F. Hussain and M.A. Hasan: J. Fluid Mech. 134, 431(1983)CrossRefADSGoogle Scholar
  19. 19.
    A. Iafrati, G. Riccardi: J. Sound Vib. 196 129–146 (1996)CrossRefADSGoogle Scholar
  20. 20.
    L.D. Landau and E.M. Lifchitz: Course of Theoretical Physics Volume 6: Fluid Mechanics, 2nd edn. (Pergamon, Oxford 1987)zbMATHGoogle Scholar
  21. 21.
    M.J. Lighthill: Proc. Roy. Soc. A211, 564–587 (1952)zbMATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    M.J. Lighthill: Proc. Roy. Soc. A222, 1–32 (1954)zbMATHCrossRefADSMathSciNetGoogle Scholar
  23. 23.
    G.M. Lilley: ‘Jet Noise Classical Theory and Experiments’. In: Aeroacoustics of Flight Vehicles, Theory and Practice, Volume 1: Noise Sources ed. by H.H. Hubbard (Acoustical Society of America, New York 1995) pp. 211–289Google Scholar
  24. 24.
    M.E. McIntyre, R.T. Schumacher, J. Woodhouse: J. Acoust. Soc. Am. 74, 1325–1345 (1983)CrossRefADSGoogle Scholar
  25. 25.
    H.J. Merk: Applied Scientific Research A6, 402–420 (1956-1957)MathSciNetGoogle Scholar
  26. 26.
    C.L. Morfey: J. Sound Vib. 31, 391–397 (1973)CrossRefADSGoogle Scholar
  27. 27.
    C.L. Morfey: J. Sound Vib. 48, 95–111 (1984)CrossRefADSGoogle Scholar
  28. 28.
    P.M. Morse, H. Feshbach: Methods of Theoretical Physics (MacGraw Hill, New York 1953)zbMATHGoogle Scholar
  29. 29.
    E.A. Müller, F. Obermeier: Fluid Dyn. Res. 3, 43–51(1988)CrossRefADSGoogle Scholar
  30. 30.
    R.E. Musafir: ‘A Discussion on the Structure of Aeroacoustic Wave Equations’. In Proceedings of the 4th Congress on Acoustics, Marseille, France April, 1997 (Teknea, Toulouse 1997) pp. 923–926Google Scholar
  31. 31.
    M.K. Myers: J. Sound Vib. 109, 277–284 (1986)CrossRefADSGoogle Scholar
  32. 32.
    F. Obermeier: J. Sound Vib. 41, 463–472 (1975)CrossRefzbMATHADSGoogle Scholar
  33. 33.
    F. Obermeier: J. Sound Vib. 99, 111–120 (1985)zbMATHCrossRefADSGoogle Scholar
  34. 34.
    M.C.A.M. Peters, A. Hirschberg, A.J. Reijnen, A.P.J. Wijnands: J. Fluid Mech. 256, 499–534 (1993)CrossRefADSGoogle Scholar
  35. 35.
    A. Pierce: Acoustics, An Introduction to its Physical Principles and Applications (Acoustical Society of America, New York 1989)Google Scholar
  36. 36.
    A. Powell: J. Acoust. Soc. Am. 36(1), 177–195 (1964)CrossRefMathSciNetADSGoogle Scholar
  37. 37.
    A. Powell: Trans. ASME, J. Vib. Ac. 112, 145–159 (1990)CrossRefGoogle Scholar
  38. 38.
    J.W.S. Rayleigh: The Theory of Sound (Dover, New York 1945)zbMATHGoogle Scholar
  39. 39.
    S.W. Rienstra: J. Fluid Mech. 108, 443–460 (1981)zbMATHCrossRefADSMathSciNetGoogle Scholar
  40. 40.
    S.W. Rienstra: An Introduction to Acoustics (Report IWDE 01-03, Technische Universiteit Eindhoven, 2001)Google Scholar
  41. 41.
    P.L. Rijke: Annalen der Physik 107, 339–343 (1859)ADSGoogle Scholar
  42. 42.
    D. Rockwell, E. Naudasher: Trans. ASME, J. Fluids Eng. 100, 152–165 (1978)CrossRefGoogle Scholar
  43. 43.
    D. Rockwell: AIAA Journal 21(5), 645–664 (1983)CrossRefADSGoogle Scholar
  44. 44.
    P.J. Saffman: Vortex Dynamics (Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge 1992)Google Scholar
  45. 45.
    C. Schram, A. Hirschberg: to be submitted Google Scholar
  46. 46.
    C.K.W. Tam: ‘On the failure of the acoustic analogy theory to identify the correct noise sources’. In: Proc. 7th AIAA/CEAS Aeroac. Conf., Maastricht, 28-30 May 2001Google Scholar
  47. 47.
    P.A. Thompson: Compressible Fluid Dynamics (MacGraw-Hill, New York 1972)zbMATHGoogle Scholar
  48. 48.
    T.A. Wilson, G.S. Beavers, M.A. de Coster, D.K. Holger, D. Regenfuss: J. Acoust. Soc. Am. 50, 366–372 (1971)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Avraham Hirschberg
    • 1
  • Christophe Schram
    • 2
  1. 1.Dept. of App. PhysicsEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Environmental and Applied Fluid Dynamics Dept.von Karman Institute for Fluid DynamicsRhode-Saint-GenèseBelgium

Personalised recommendations