Skip to main content

Plasmon Resonances in Nanowires with a Non—regular Cross-Section

  • Chapter
  • First Online:

Part of the book series: Topics in Applied Physics ((TAP,volume 88))

Abstract

We investigate numerically the spectrum of plasmon resonances for metallic nanowires with a non-regular cross-section in the 20—50 nm range. After briefly recalling the physical properties of metals at optical frequencies, we point out the intrinsic difficulties in the computation of the plasmon resonances for nanoparticles with a non-regular shape. We then consider the resonance spectra corresponding to nanowires whose cross-sections form different simplexes. The number of resonances strongly increases when the section symmetry decreases: A cylindrical wire exhibits one resonance, whereas we observe more than 5 distinct resonances for a triangular particle. The spectral range covered by these different resonances becomes very large, giving to the particle specific distinct colors. At the resonance, dramatic field enhancement is observed at the vicinity of non-regular particles, where the field amplitude can reach several hundred times that of the illumination field. This near-field enhancement corresponds to surface enhanced Raman scattering (SERS) enhancement locally in excess of 1012. The distance dependence of this enhancement is investigated and we show that it depends on the plasmon resonance excited in the particle, i.e. on the illumination wavelength. The average Raman enhancement for molecules distributed on the entire particle surface is also computed and discussed in the context of experiments in which large numbers of molecules are used. Finally we discuss the influence of the model permittivity which enters the calculation, as well as the resonances shift and broadening produced by a water background.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Kerker: Founding fathers of light scattering and surface-enhanced Raman scattering, Appl. Opt. 30, 4699 (1991)

    Article  ADS  Google Scholar 

  2. R. Jin, Y.W. Cao, C.A. Mirkin, K.L. Kelly, G.C. Schatz, J.G. Zheng: Photoinduced conversion of silver nanospheres to nanoprism, Science 294, 1901 (2001)

    Article  ADS  Google Scholar 

  3. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, S. Schultz: Shape effects in plasmon resonance of individual colloidal silver nanoparticles, J. Chem. Phys. 116, 6755 (2002)

    Article  ADS  Google Scholar 

  4. M. Fleischmann, P. J. Hendra, A. J. McQuillan: Raman-spectra of pyridine adsorbed at a silver electrode, Chem. Phys. Lett. 26, 163 (1974)

    Article  ADS  Google Scholar 

  5. D.L. Jeanmaire, R. P. van Duyne: Surface Raman spectroelectrochemistry. 1. Heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrodes, J. Electroanal. Chem. 84, 1 (1977)

    Article  Google Scholar 

  6. H. Metiu: Surface enhanced spectroscopy, Prog. Surf. Sci. 17, 153 (1984)

    Article  ADS  Google Scholar 

  7. M. Moskovits: Surface-enhanced spectroscopy, Rev. Mod. Phys. 57, 783 (1985)

    Article  ADS  Google Scholar 

  8. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, M.S. Feld: Single molecule detection using surface-enhanced Raman scattering, Phys. Rev. Lett. 78, 1667 (1997)

    Article  ADS  Google Scholar 

  9. S. Nie, S.R. Emory: Probing single molecules and single nanoparticles by surface-enhanced Ramsn scattering, Science 275, 1102 (1997)

    Article  Google Scholar 

  10. H. Xu, E. J. Bjerneld, M. Käll, L. Börjesson: Spectroscopy of single Hemoglobin molecules by surface enhanced Raman scattering, Phys. Rev. Lett. 83, 4357 (1999)

    Article  ADS  Google Scholar 

  11. A. Otto, I. Mrozek, H. Grabhorn, W. Akemann: Surface-enhanced Raman scattering, J. Phys. C 4, 1143 (1992)

    Google Scholar 

  12. P. Kambhampati, C.M. Child, M. C. Foster, A. Campion: On the chemical mechanism of surface enhanced Raman scattering: Experiment and theory, J. Chem. Phys. 108, 5013 (1998)

    Article  ADS  Google Scholar 

  13. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, C. Girard: Squeezing the optical near-field by plasmon coupling of metallic nanoparticles, Phys. Rev. Lett. 82, 2590 (1999)

    Article  ADS  Google Scholar 

  14. J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, J.-P. Goudonnet: Plasmon polaritons of metallic nanowires for controlling submicron propagation of light, Phys. Rev. B 60, 9061 (1999)

    Article  ADS  Google Scholar 

  15. T. Yatsui, M. Kourogi, M. Ohtsu: Plasmon waveguide for optical far/near-field conversion, Appl. Phys. Lett. 79, 4583 (2001)

    Article  ADS  Google Scholar 

  16. J. Tominaga, T. Nakano, N. Atoda: Super-resolution structure for optical data storage by near-field optics, Proc. SPIE 3467, 282 (1999)

    Article  ADS  Google Scholar 

  17. L. Men, J. Tominaga, H. Fuji, Q. Chen, N. Atoda: High-density optical data storage using scattering-mode super-resolution near-field structure, Proc. SPIE 4085, 204 (2001)

    Article  ADS  Google Scholar 

  18. J. Tominaga, C. Mihalcea, D. Büchel, H. Fukuda, T. Nakano, N. Atoda, H. Fuji, T. Kikukawa: Local plasmon photonic transistor, Appl. Phys. Lett. 78, 2417 (2001)

    Article  ADS  Google Scholar 

  19. K. Bromann, C. Félix, H. Brune, W. Harbich, R. Monot, J. Buttet, K. Kern: Controlled deposition of size-selected Silver nanoclusters, Science 274, 956 (1996)

    Article  ADS  Google Scholar 

  20. D. M. Kolb, R. Ullmann, T. Will: Nanofabrication of small copper clusters on gold(111) electrodes by a scanning tunneling microscope, Science 275, 1097 (1997)

    Article  Google Scholar 

  21. Y.-Y. Yu, S.-S. Chang, C.-L. Lee, C.R.C. Wang: Gold nanorods: Electrochemical synthesis and optical properties, J. Phys. Chem. B 101, 6661 (1997)

    Article  Google Scholar 

  22. K. Abe, T. Hanada, Y. Yoshida, N. Tanigaki, H. Takiguchi, H. Nagasawa, M. Nakamoto, T. Yamaguchi, K. Yase: Two-dimensional array of silver nanoparticles, Thin Solid Films 327-329, 524 (1997)

    Article  ADS  Google Scholar 

  23. D. Y. Petrovykh, F. J. Himpsel, T. Jung: Width distribution of nanowires grown by step decoration, Surf. Science 407, 189 (1998)

    Article  ADS  Google Scholar 

  24. G. L. Che, B. B. Lakshmi, E. R. Fisher, C. R. Martin: Carbon nanotubule membranes for electrochemical energy storage and production, Nature 393, 346 (1998)

    Article  ADS  Google Scholar 

  25. J. Viereck, F. Stietz, M. Stuke, T. Wenzel, F. Träger: The role of surface defects in laser-induced thermal desorption from metal surfaces, Surf. Sci. 383, 749 (1997)

    Article  Google Scholar 

  26. J. Bosbach: Laser-based method for fabricating monodispersive metallic nano-particles, Appl. Phys. Lett. 74, 2605 (1999)

    Article  ADS  Google Scholar 

  27. I. Utke, P. Hoffmann, B. Dwir, E. Kapon, P. Doppelt: Focused electron beam induced deposition of gold, J. Vac. Sci. Technol. B 18, 3168 (2000)

    Article  Google Scholar 

  28. A. P. Li, F. Müller, U. Gösele: Polycrystalline and monocrystalline pore arrays with large interpore distance in anodic alumina, Electrochem. Solid-State Lett. 3, 131 (2000)

    Article  Google Scholar 

  29. D.-S. Wang, H. Chew, M. Kerker: Enhanced Raman scattering at the surface of a spherical particle, Appl. Opt. 19, 2256 (1980)

    Article  ADS  Google Scholar 

  30. M. Kerker, D.-S. Wang, H. Chew: Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata, Appl. Opt. 19, 4159 (1980)

    Article  ADS  Google Scholar 

  31. P. K. Aravind, A. Nitzan, H. Metiu: The interaction between electromagnetic resonances and its role in spectroscopic studies of molecules adsorbed on colloidal particles or metal spheres, Surf. Sci. 110, 189 (1981)

    Google Scholar 

  32. P.W. Barber, R. K. Chang, H. Massoudi: Electrodynamic calculations of the surface-enhanced electric intensities on large Ag spheroids, Phys. Rev. B 27, 7251 (1983)

    Article  ADS  Google Scholar 

  33. M. Inoue, K. Ohtaka: Enhanced Raman scattering by two-dimensional array of polarizable spheres, J. Phys. Soc. Jpn. 52, 1457 (1983)

    Article  ADS  Google Scholar 

  34. K.T. Carron, W. Fluhr, M. Meier, A. Wokaun, H.W. Lehmann: Resonances of two-dimensional particle gratings in surface-enhanced Raman scattering, J. Opt. Soc. Am. B 3, 430 (1986)

    Article  ADS  Google Scholar 

  35. R. Rojas, F. Claro: Theory of surface enhanced Raman scattering in colloids, J. Chem. Phys. 98, 998 (1993)

    Article  ADS  Google Scholar 

  36. A. I. Vanin: Surface-amplified Raman scattering of light by molecules adsorbed on groups of spherical particles, J. Appl. Spectrosc. 62, 32 (1995)

    Article  ADS  Google Scholar 

  37. K.-P. Charlé, L. König, S. Nepijko, I. Rabin, W. Schulze: The surface plasmon resonance in free and embedded Ag-clusters in the size range 1,5nm < D < 30 nm, Cryst. Res. Technol. 33, 1085 (1998)

    Article  Google Scholar 

  38. J. Gersten, A. Nitzan: Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces, J. Chem. Phys. 73, 3023 (1980)

    Article  ADS  Google Scholar 

  39. M. Weber, D. L. Mills: Interaction of electromagnetic waves with periodic gratings: Enhanced fields and the reflectivity, Phys. Rev. B 27, 2698 (1983)

    Article  ADS  Google Scholar 

  40. F. J. Garcia-Vidal, J. B. Pendry: Electromagnetic interactions with rough metal surfaces, Prog. Surf. Sci. 50, 55 (1995)

    Article  ADS  Google Scholar 

  41. S. J. Oldenburg, R. D. Averitt, S.L. Westcott, N.J. Halas: Nanoengineering of optical resonances, Chem. Phys. Lett. 288, 243 (1998)

    Article  ADS  Google Scholar 

  42. F. J. Garcia-Vidal, J. B. Pendry: Collective theory for surface enhanced Raman scattering, Phys. Rev. Lett. 77, 1163 (1996)

    Article  ADS  Google Scholar 

  43. M. Kahl, E. Voges, S. Kostrewa, C. Viets, W. Hill: Periodically structured metallic substrates for SERS, Sens. Actuators B 51, 285 (1998)

    Article  Google Scholar 

  44. M. Kahl, E. Voges: Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures, Phys. Rev. B 61, 14078 (2000)

    Article  ADS  Google Scholar 

  45. R. Fuchs: Theory of the optical properties of ionic crystal cubes, Phys. Rev. B 11, 1732 (1975)

    Article  ADS  Google Scholar 

  46. W.-H. Yang, G. C. Schatz, R. P. van Duyne: Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shape, J. Chem. Phys. 103, 869 (1995)

    Article  ADS  Google Scholar 

  47. T. R. Jensen, G. C. Schatz, R. P. van Duyne: Nanosphere lithography: surface plasom resonance spectrum of a periodic array of silver nanoparticles by ultraviolett-visible extinction spectroscopy and electrodynamic modeling, J. Phys. Chem. B 103, 2394 (1999)

    Article  Google Scholar 

  48. N. Félidj, J. Aubard, G. Lévi: Discrete dipole approximation for ultraviolet-visible extinction spectra simulation of silver and gold colloids, J. Chem. Phys. 111, 1195 (1999)

    Article  ADS  Google Scholar 

  49. J. P. Kottmann, O. J. F. Martin: Accurate solution of the volume integral equation for high permittivity scatterers, IEEE Trans. Antennas Propag. 48, 1719 (2000)

    Article  ADS  Google Scholar 

  50. J. P. Kottmann, O. J. F. Martin, D. R. Smith, S. Schultz: Dramatic localized electromagnetic enhancement in plasmon resonant nanowires, Chem. Phys. Lett. 341, 1 (2001)

    Article  ADS  Google Scholar 

  51. J. P. Kottmann, O. J. F. Martin, D. R. Smith, S. Schultz: Non-regularly shaped plasmon resonant nanoparticle as localized light source for near-field microscopy, J. Microscopy 202, 60 (2001)

    Article  MathSciNet  Google Scholar 

  52. J. P. Kottmann, O. J. F. Martin, D.R. Smith, S. Schultz: Plasmon resonances of silver nanowires with a non-regular cross-section, Phys. Rev. B 64,235 402 (2001)

    Google Scholar 

  53. J. P. Kottmann, O. J. F. Martin: Influence of the cross section and the permittivity on the plasmon-resonance spectrum of silver nanowires, Appl. Phys. B 73, 299 (2001)

    Article  ADS  Google Scholar 

  54. J.P. Kottmann, O. J. F. Martin, D.R. Smith, S. Schultz: Spectral response of Silver nanoparticles, Optics Express 6, 213 (2000)

    Article  ADS  Google Scholar 

  55. J. P. Kottmann, O. J. F. Martin, D. R. Smith, S. Schultz: Field polarization and polarization charge distributions in plasmon resonant particles, New J. Phys. 2, 27.1 (2000)

    Article  Google Scholar 

  56. J. P. Kottmann, O. J. F. Martin: Plasmon resonant coupling in metallic nanowires, Optics Express 8, 655 (2001)

    Article  ADS  Google Scholar 

  57. J. P. Kottmann, O. J. F. Martin: Retardation-induced plasmon resonances in coupled nanoparticles, Opt. Lett. 26, 1096 (2001)

    Article  ADS  Google Scholar 

  58. C. F. Bohren, D.R. Huffman: Absorption and Scattering of Light by Small Particles (Wiley, New York 1983)

    Google Scholar 

  59. U. Kreibig, M. Vollmer: Optical Poperties of Metal Clusters, Springer Ser. Mater. Sci. 25 (Springer-Verlag, Berlin, Heidelberg 1995)

    Google Scholar 

  60. P. B. Johnson, R. W. Christy: Optical constants of the noble metals, Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

  61. R. Ruppin: Spherical and cylindrical surface polaritons in solids, in A. D. Boardman (Ed.): Electromagnetic Surface Modes (Wiley, Chichester 1982)

    Google Scholar 

  62. U. Kreibig, C. von Fragstein: The limitation of electron mean free path in small silver particles, Z. Physik 224, 307 (1969)

    Article  ADS  Google Scholar 

  63. L. Genzel, T. P. Martin, U. Kreibig: Dielectric function and plasma resonances of small metal particles, Z. Physik B 21, 339 (1975)

    Article  ADS  Google Scholar 

  64. J.-Y. Bigot, V. Halté, J. C. Merle, A. Daunois: Electron dynamics in metallic nanoparticles, Chem. Phys. 251, 181 (2000)

    Article  Google Scholar 

  65. M. Brack: The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches, Rev. Mod. Phys. 65, 677 (1993)

    Article  ADS  Google Scholar 

  66. V. V. Kresin: Collective resonances and response properties of electrons in metal clusters, Phys. Rep. 220, 1 (1992)

    Article  ADS  Google Scholar 

  67. V. Bonacic-Koutecky, P. Fantucci, J. Koutecky: Quantum-chemistry of small clusters of elements of group-IA, group-IB, and group-IIA: Fundamental concepts, predictions and interpretation of experiments, Chem. Rev. 91, 1035 (1991)

    Article  Google Scholar 

  68. O. J. F. Martin, N. B. Piller: Electromagnetic scattering in polarizable backgrounds, Phys. Rev. E 58, 3909 (1998)

    Article  ADS  Google Scholar 

  69. M. Paulus, P. Gay-Balmaz, O. J. F. Martin: Accurate and efficient computation of the Green’s tensor for stratified media, Phys. Rev. E 62, 5797 (2000)

    Article  ADS  Google Scholar 

  70. M. Paulus, O. J. F. Martin: Light propagation and scattering in stratified media: A Green’s tensor approach, J. Opt. Soc. Am. A 18, 854 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  71. A. Taflove: Computational Electrodynamics, the FDTD Method (Artech House, Boston 1995)

    Google Scholar 

  72. B. T. Draine, P. J. Flatau: Discrete-dipole approximation for scattering calculations, J. Opt. Soc. Am. A 11, 1491 (1994)

    Article  ADS  Google Scholar 

  73. P. J. Flatau: Improvements in the discrete-dipole approximation method of computing scattering and absorption, Opt. Lett. 22, 1205 (1997)

    Article  ADS  Google Scholar 

  74. M.I. Stockmann, V.M. Shalaev, M. Moskovits, R. Botet, T.F. George: Enhanced Raman scattering by fractal clusters: Scale-invariant theory, Phys. Rev. B 46, 2821 (1992)

    Article  ADS  Google Scholar 

  75. N. B. Piller, O. J. F. Martin: Increasing the performances of the coupled-dipole approximation: A spectral approach, IEEE Trans. Antennas Propag. 46, 1126 (1998)

    Article  ADS  Google Scholar 

  76. J. van Bladel: Singular Electromagnetic Fields and Sources (Clarendon, Oxford 1991)

    Google Scholar 

  77. L. D. Landau, E. M. Lifshitz, L. P. Pitaevskii: Electrodynamics of continuous media, Vol. 8 of Landau and Lifshitz course on theoretical physics, 2nd. ed. (Butterworth Heinemann, Oxford 1998)

    Google Scholar 

  78. B. Hecht, H. Bielefeld, Y. Inouye, D.W. Pohl, L. Novotny: Facts and artifacts in near-field optical microscopy, J. Appl. Phys. 81, 2492 (1997)

    Article  ADS  Google Scholar 

  79. R. P. van Duyne: private communication

    Google Scholar 

  80. M. D. Malinsky, L. Kelly, G. C. Schatz, R. P. van Duyne: Chain length dependance and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with Alkanethiol self-assembled monolayers, J. Am. Chem. Soc. 123, 1471 (2001)

    Article  Google Scholar 

  81. A. Campion, P. Kambhampati: Surface-enhanced Raman scattering, Chem. Soc. Rev. 27, 241 (1998)

    Article  Google Scholar 

  82. P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J.-C. Rivoal, V. Shalaev, A. Sarychev: Direct observation of locally enhanced electromagnetic fields, Physica B 279, 52 (2000)

    Article  ADS  Google Scholar 

  83. Y. C. Martin, H. K. Wickramasinghe: Resolution test for apertureless near-field optical microscopy, J. Appl. Phys. 91, 3363 (2002)

    Article  ADS  Google Scholar 

  84. U. Kreibig, C. von Fragstein: Electronic properties of small silver particles: the optical constants and their temperature dependence, J. Phys. F. 4, 999 (1974)

    Article  ADS  Google Scholar 

  85. N.D. Fatti, F. Vallée, C. Flytzanis, Y. Hamanaka, A. Nakamura: Electron dynamics and surface plasmon resonance nonlinearities in metal nanoparticles, Chem. Phys. 251, 215 (2000)

    Article  Google Scholar 

  86. Optical Society of America, in M. Bass (Ed.): Handbook of Optics, Vol. II., 2nd ed. (McGraw Hill, New York 1995)

    Google Scholar 

  87. H. Xu, J. Aizpurua, M. Käll, P. Apell: Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering, Phys. Rev. E 62, 4318 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Martin, O.J.F. (2003). Plasmon Resonances in Nanowires with a Non—regular Cross-Section. In: Tominaga, J., Tsai, D.P. (eds) Optical Nanotechnologies. Topics in Applied Physics, vol 88. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45871-9_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-45871-9_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44070-3

  • Online ISBN: 978-3-540-45871-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics