A Scale and Rotation Parameters Estimator Application to Technical Document Interpretation

  • Sebastien Adam
  • Jean-Marc Ogier
  • Claude Cariou
  • Joel Gardes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2390)


In this paper, we consider the general problem of technical document interpretation, applied to the documents of the French Telephonic Operator, France Telecom. At GREC’99, we presented a new set of features, based on the Fourier-Mellin transform (FMT), allowing a good classification of multi-oriented and multi-scaled pattern in comparison with classical approach. For this GREC’01, we propose the use of this set of features for the rotation and scale parameters estimation, through the use of the shift theorem of the Fourier transform. A comparison with a parameter estimation issued from Zernike moments is also given.


Zernike Moment Orientation Estimation Reference Shape France Telecom Shift Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Boatto. et al., An interpretation system for land register maps, IEEE Computer Magazine Vol. 25, pp. 25–33, 1992.Google Scholar
  2. 2.
    S.H. Joseph, P. Pridmore, Knowledge-directed interpretation of line drawing images, IEEE Trans. on PAMI 14(9), pp. 928–940, 1992.Google Scholar
  3. 3.
    J.-.M. Ogier, R. Mullot, J. Labiche, Y. Lecourtier, Multilevel approach and distributed consistency for technical map interpretation: application to cadastral maps, Computer Vision and Image Understanding (CVIU) 70, pp. 438–451, 1998.CrossRefGoogle Scholar
  4. 4.
    P. Vaxivière, K. Tombre, CELESTEN: CAD conversion of mechanical drawings, IEEE Computer Magazine 25, pp. 46–54, 1992.Google Scholar
  5. 5.
    O.D. Trier, A. K. Jain, T. Taxt, Features extraction methods for character recognition-a survey, Pattern Recognition 29, pp. 641–662, 1996.CrossRefGoogle Scholar
  6. 6.
    S. Adam, J.M. Ogier, C. Cariou, R. Mullot, J. Gardes, Y. Lecourtier, Combination of Invariant Pattern Recognition primitives on Technical Documents, Proceedings of GREC’99, Bangalore, India, pp 203–210, 1999.Google Scholar
  7. 7.
    S. Adam, R. Mullot, J.M. Ogier, C. Cariou, J. Gardes, Y. Lecourtier, Processing of the Connected Shapes in Raster-to-Vector Conversion Process, Proceedings of GREC’99, Bangalore, India, pp 38–45, 1999.Google Scholar
  8. 8.
    F. Ghorbel, A complete invariant description for gray level images by the harmonic analysis approach, Pattern Recognition Letters 15, pp. 1043–1051, 1994.CrossRefGoogle Scholar
  9. 9.
    J. A. Nelder and R. Mead, A simplex method for function minimization, Computer Journal 7, pp. 308–313, 1965.zbMATHGoogle Scholar
  10. 10.
    D. Zongker and A. Jain, Algorithms for Feature Selection: An Evaluation, Proceedings of International Conference on Pattern Recognition, Vol II, pp 18–22, 1996.CrossRefGoogle Scholar
  11. 11.
    W.-Y. Kim and Y.-S. Kim, Robust rotation angle estimator, IEEE Trans. on PAMI 21(8),pp. 768–773, 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Sebastien Adam
    • 1
  • Jean-Marc Ogier
    • 2
  • Claude Cariou
    • 3
  • Joel Gardes
    • 4
  1. 1.Laboratory PSIUniversity of RouenMont Saint AignanFrance
  2. 2.Laboratory L3IUniversity of La RochelleLa RochelleFrance
  3. 3.LASTI, ENSSAT LannionLannionFrance
  4. 4.DMI/GRIFrance Telecom R&DLannionFrance

Personalised recommendations