Generating Logic Descriptions for the Automated Interpretation of Topographic Maps

  • Antonietta Lanza
  • Donato Malerba
  • Francesca A. Lisi
  • Annalisa Appice
  • Michelangelo Ceci
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2390)


Automating the interpretation of a map in order to locate some geographical objects and their relations is a challenging task, which goes beyond the transformation of map images into a vectorized representation and the recognition of symbols. In this work, we present an approach to the automated interpretation of vectorized topographic maps. It is based on the generation of logic descriptions of maps and the application of symbolic Machine Learning tools to these descriptions. This paper focuses on the definition of computational methods for the generation of logic descriptions of map cells and briefly describes the use of these logic descriptions in an inductive learning task.


Geographical Information System Spatial Relation Logic Description Feature Extraction Algorithm Machine Learning Tool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barzohar, M., and Cooper, D.B. (1996). Automatic finding of main roads in aerial images by using geometric-stochastic models and estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(7), 707–720CrossRefGoogle Scholar
  2. 2.
    den Hartog, J., Holtrop, B. T., de Gunst, M. E., and Oosterbroek, E. P. (2000). Interpretation of Geographic Vector-Data in Practice. In A.K. Chhabra and D. Dori (eds.), Graphics Recognition Recent Advances, Lecture Notes in Computer Science 1941, Berlin: Springer, 50–57CrossRefGoogle Scholar
  3. 3.
    Dupon, F., Deseilligny, M. P., and Gondran, M. (1998). Automatic Interpretation of Scanned Maps: Reconstruction of Contour Lines. In K. Tombre & A.K. Chhabra (Eds.), Graphics Recognition: Algorithms and Systems, Lecture Notes in Computer Science 1389, Barlin: Springer, 194–206Google Scholar
  4. 4.
    Esposito, F., Lanza, A., Malerba, D., and Semeraro, G. (1997). Machine learning for map interpretation: an intelligent tool for environmental planning. Applied Artificial Intelligence. 11(7–8), 673–695CrossRefGoogle Scholar
  5. 5.
    Frank, A. U. (1992). Spatial concepts, geometric data models, and geometric data structures. Computers & Geosciences, 18(4), 409–417CrossRefGoogle Scholar
  6. 6.
    Gaede V., and Günther O. (1998). Multidimensional Access Methods, ACM Computing Surveys, 30(2), 170–231CrossRefGoogle Scholar
  7. 7.
    Keates, J. S. (1996). Map understanding. Edinburgh:LongmanGoogle Scholar
  8. 8.
    Liow, Y.-T., and Pavlidis, T. (1990). Use of shadows for extracting buildings in aerial images. Computer Vision, Graphics, and Image Processing, 49, 242–277zbMATHCrossRefGoogle Scholar
  9. 9.
    Malerba, D., Esposito, F., and Lisi, F. A. (1998). Learning Recursive Theories with ATRE. In Proceedings of the 13th European Conference on Artificial Intelligence, ed. H. Prade, 435–439, Chichester (UK): John Wiley & SonsGoogle Scholar
  10. 10.
    Malerba, D., Esposito, F., Lanza, A., Lisi, F. A., and Appice, A. (2002). Empowering a GIS with Inductive Learning Capabilities: The case of INGENS. Journal of Computers, Environment and Urban Systems, (to appear)Google Scholar
  11. 11.
    Mayer, H. (1994). Is the knowledge in map-legends and GIS-models suitable for image understanding? International Archives of Photogrammetry and Remote Sensing 30(4), 52–59Google Scholar
  12. 12.
    Mitchell, T. (1997). Machine learning. New York: McGraw-HillzbMATHGoogle Scholar
  13. 13.
    Open GIS Consortium (1996). The OpenGIS Abstract Specification.
  14. 14.
    Pavlidis, T. (1982). Algorithms for graphics and image processing. Springer, BerlinGoogle Scholar
  15. 15.
    Rashid, A., Shariff, B. M., Egenhofer, M. J., and Mark, D. M. (1998). Natural language spatial relations between linear and aeral objects: the topology and metric of English Language terms. International Journal of Geographical Information Science, 12(3), 215–246Google Scholar
  16. 16.
    Sondheim, M., Gardels, K., and Buehler, K. (1999). GIS Interoperability. In P.A. Longley, M.F. Goodchild, D.J. Maguire, and D.W. Rhinds (eds.), Geographical Information Systems, Principles and Technical Issues, Volume 1, New York: John Wiley & Sons, 347–358Google Scholar
  17. 17.
    Yamada, H., Yamamoto, K., and Hosokawa, K. (1993). Directional Mathematical Morphology and Reformalized Hough Transformation for the Analysis of Topographic Maps, IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(4), 380–387CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Antonietta Lanza
    • 1
  • Donato Malerba
    • 1
  • Francesca A. Lisi
    • 1
  • Annalisa Appice
    • 1
  • Michelangelo Ceci
    • 1
  1. 1.Dipartimento di InformaticaUniversità degli Studi di BariBariItaly

Personalised recommendations