Advertisement

Semantic Analysis and Recognition of Raster-Scanned Color Cartographic Images

  • Serguei Levachkine
  • Aurelio Velàzquez
  • Victor Alexandrov
  • Mikhail Kharinov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2390)

Abstract

Semantic analysis of cartographic images is interpreted as a separate representation of cartographic patterns (alphanumeric, punctual, linear, and area). We present an approach to map interpretation exploring the idea of synthesis of invariant graphic images at low level processing (vectorization and segmentation). This means that we ran “vectorization-recognition” and “segmentation-interpretation” systems simultaneously. Although these systems can generate some errors in interpretation, they are much more useful for the following understanding algorithms because its output is nearly recognized objects of interest.

Keywords

Color Image Source Image Character Recognition Composite Image Color Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Doermann, D. S.: An Introduction to Vectorization and Segmentation. In: Tombre, K., Chhabra, A.K. (eds.): Graphics Recognition Algorithms and Systems. Lecture Notes in Computer Science, Vol. 1389. Springer-Verlag, Berlin Heidelberg New York (1998) 1–8Google Scholar
  2. 2.
    Gonzalez, R. C., Woods, R. E.: Digital Image Processing. 3rd edn. Prentice-Hall PTR, NJ USA (2002)Google Scholar
  3. 3.
    Otsu, N.: A Threshold Selection Method from Gray-level Histograms. IEEE Transactions on Systems: Man and Cybernetics. 9(1) (1979) 62–66MathSciNetCrossRefGoogle Scholar
  4. 4.
    Umbaugh, S. E.: Computer Vision and Image Processing: A Practical Approach using CVIPtools, Prentice-Hall PTR, NJ USA (1998)Google Scholar
  5. 5.
    Alexandrov, V. V., Gorsky, N. D.: Image Representation and Processing: A Recursive Approach. Mathematics and Its Applications, Vol. 261. Kluwer Academic Publishers, Dordrecht Boston London (1993)Google Scholar
  6. 6.
    Kharinov, M., Nesterov, M.: Intelligent Program for Automatic Image Recognition based on Compact Object-fitting Hierarchical Image Representation in terms of Dynamic Irregular Ramified Trees. In: Barulin, V.N. (ed.): Reports of International Academy for Informatics, Communications and Management, Special Issue 12-C. St. Petersburg, Russia (1997) 1–35 (Library of Congress Number: 98646239)Google Scholar
  7. 7.
    Alexandrov, V., Kharinov, M., Levachkine, S.: Conception of Hierarchical Dynamic Structure in Application to Audio and Video Data Recognition. In: Hamza, M.N. (ed.): Proc. IASTED International Conference on Artificial Intelligence and Soft Computing, ASC 2001, 21–24 May, Cancun, Mexico (2001) 348–353 (ISBN 0-88986-283-4; ISSN 1482-7913)Google Scholar
  8. 8.
    Levachkine, S., Velázquez, A., Alexandrov, V.: Color Image Segmentation using False Colors and its Applications to Geo-images Treatment: Alphanumeric Character Recognition. Proc. IEEE International Geosciences and Remote Sensing Symposium, IGARSS 2001, 9–13 July, Sydney, Australia (2001) (IEEE Catalog Number (CD-ROM): 01CH37217C; Library of Congress Number: 01-087978; ISBN CD-ROM: 0-7803-7033-3)Google Scholar
  9. 9.
    Levachkine, S., Velázquez, A., Alexandrov, V., Kharinov, M.: Semantic Analysis and Recognition of Raster-scanned Color Cartographic Images. In: Blostein, D., Young-Bin Kwon (eds.): Proc. 4th IAPR Int. Workshop on Graphics Recognition, GREC 2001, 7–8 September, Kingston, Ontario, Canada (2001) 255–266Google Scholar
  10. 10.
    Kumar, K. S., Desai, U. B.: Joint Segmentation and Image Interpretation. Pattern Recognition. 32(4) (1999) 577–589CrossRefGoogle Scholar
  11. 11.
    Cheng, H. D., Jiang, X. H., Sun, Y., Wang, J.: Color Image Segmentation: Advances and Prospects. Pattern Recognition. 34(12) (2001) 2259–2281zbMATHCrossRefGoogle Scholar
  12. 12.
    Levachkine, S., Sossa, J.H.: Image Segmentation as an Optimization Problem. Computation and Systems. 3(4) (2000) 245–263 (ISSN 1405-5546)Google Scholar
  13. 13.
    Render, J.: Saturation, Hue, and Normalized Color: Calculation, Digitization Effects, and Use. Computer Science Technical Report. Carnegie Mellon University (1976)Google Scholar
  14. 14.
    Velázquez, A.: Localización, Recuperación e Identificatión de la Capa de Caracteres Contenida en los Planos Cartográficos. Ph.D. Thesis. Centre for Computing Research-IPN. Mexico City, Mexico (2002) (in Spanish)Google Scholar
  15. 15.
    Definiens Imaging GmbH e-Cognition: Object Oriented Image Analysis. http://www.definiens-imaging.com/ecognition/
  16. 16.
    Ogier, J.M., Adam, S., Vessaid, A., Bechar, H.: Automatic Topographic Map Analysis System. In: Blostein, D., Young-Bin Kwon (eds.): Proc. 4th IAPR Int. Workshop on Graphics Recognition, GREC 2001, 7–8 September, Kingston, Ontario, Canada (2001) 229–244Google Scholar
  17. 17.
    Cheng, H.D., Jiang, X.H., Wang, J.: Color Image Segmentation based on Homogram Thresholding and Region Merging. Pattern Recognition. 35(2) (2002) 373–393zbMATHCrossRefGoogle Scholar
  18. 18.
    Chen, T. Q., Lu, Y.: Color Image Segmentation-an Innovative Approach. Pattern Recognition. 35(2) (2002) 395–405zbMATHCrossRefGoogle Scholar
  19. 19.
    Wenyin, L., Dori, D.: Genericity in Graphics Recognition Algorithms. In: Tombre, K., Chhabra, A.K. (eds.): Graphics Recognition Algorithms and Systems. Lecture Notes in Computer Science, Vol. 1389. Springer-Verlag, Berlin Heidelberg New York (1998) 9–20Google Scholar
  20. 20.
    Levachkine, S., Polchkov, E.: Automated Map Raster Digitization by Cartographic Pattern Recognition. In: Muge, F., Ruiz Shulcloper, J. (eds.): Proc. 5th Iberoamerican Symposium on Pattern Recognition, SIARP 2000, 11–13 September, Lisbon, Portugal (2000) 81–96 (ISBN 972-97711-1-1)Google Scholar
  21. 21.
    Decelis-Burguete, J. O.: Digitalización automatizada de líneas en mapas ráster. M.S. Thesis, Centre for Computing Research-IPN, Mexico City, Mexico (2001) (in Spanish)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Serguei Levachkine
    • 1
  • Aurelio Velàzquez
    • 1
  • Victor Alexandrov
    • 2
  • Mikhail Kharinov
    • 2
  1. 1.Centre for Computing Research-IPNUPALM ZacatencoMexico CityMexico
  2. 2.Institute for Informatics and AutomationThe Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations