Skip to main content

1550 nm Volume Holographic Devices for Optical Communication Networks

  • Chapter
  • First Online:
Infrared Holography for Optical Communications

Part of the book series: Topics in Applied Physics ((TAP,volume 86))

Abstract

The present contribution aims to show the feasibility of LiNbO3:Fe volume holography (VH)-based devices for optical fiber communication networks. The VH technique offers a valid alternative to the existing approaches in the building of multiplexers/demultiplexers and databases for individual wavelengths inside an optical wavelength division multiplexing (WDM) system. The use of angle multiplexing jointly with the two-lambda method and the thermal post-fixing technique allow us to achieve efficient and long-lifetime operation in the near-infrared spectral range. Optical fiber communications are rapidly growing in traffic owing to many new important services such as mobile telephony and Internet connections. Increasing capacity demand calls for more transmission bandwidth and higher bit rates. In order to exploit the entire spectrum of the low-loss regions of the fiber attenuation window, Wavelength Division Multiplexing (WDM) transmission mode is today in common use. WDM technology combines multiple optical signals into a single fiber by transmitting each signal on a different wavelength (as happens in the radio spectrum). This means that telecom carriers can multiply the capacity of their fibers without the expensive investment of laying more fiber underground and undersea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. N. Denisyuk: Photographic reconstruction of the optical properties of an object in its own scattered radiation field, Sov. Phys. Dokl. 7, 543–545 (1962)

    ADS  Google Scholar 

  2. F. H. Mok: Angle-multiplexed storage of 5000 holograms in lithium niobate, Opt. Lett. 18(11) 915–917 (1993)

    Article  ADS  Google Scholar 

  3. F. T. S. Yu, S. Wu, A. W. Mayers, S. Rayan: Wavelength-multiplexed reflection-matched spatial filters using LiNbO3, Opt. Commun. 81(6), 343–347 (1991)

    Article  ADS  Google Scholar 

  4. G. W. Burr, F. H. Mok, D. Psaltis: Storage of 10000 holograms in LiNbO3:Fe, in Conf. Dig. Lasers and Electro-Optics, paper CMB7 (1994)

    Google Scholar 

  5. A. Partovi, J. Millerd, E. M. Garmire, M. Ziari, W. H. Steier, S. B. Trivedi, M. B. Klein: Photorefractivity at 1.5 mm in CdTe:V, Appl. Phys. Lett. 57, 846–848 (1990)

    Article  ADS  Google Scholar 

  6. M. Annese, P. Boffi, M. Martinelli, 1550 nm photoinduced diffractive grating in CdTe:V, in Proc. Int. Topical Meeting on Spatial Light Modulators and Integrated Optoelectronic Arrays, Snowmass, (1999) pp. 86–88

    Google Scholar 

  7. D. Psaltis, F. Mok, H. S. Li: Nonvolatile storage in photorefractive crystals, Opt. Lett. 19(8), 210–212 (1994)

    Article  ADS  Google Scholar 

  8. M. K. Smit, C. van Dam: PHASAR-based WDM devices, principles, design and applications, IEEE J. Sel. Topics Quantum Electron 2, 236–250 (1996)

    Article  Google Scholar 

  9. I. Baumann, J. Seifert, W. Nowak, M. Sauer: Compact all-fiber add-drop multiplexer using fiber Bragg gratings, IEEE Photonics Technol. Lett. 8, 1331–1333 (1997)

    Article  ADS  Google Scholar 

  10. A. Pattavina, M. Martinelli, G. Maier, P. Boffi: Techniques and technologies towards all-optical switching, Opt. Netw. Mag. 1, 75–93 (2000)

    Google Scholar 

  11. H. Fujita: Microactuators and micromachines, Proc. IEEE 86, 1721–1732 (1998)

    Article  Google Scholar 

  12. B. Pesach, G. Bartal, E. Refaeli, A. J. Agranat, J. Krupnik, D. Sadot: Free-space optical cross-connect switch by use of electroholography, Appl. Opt. 39, 746–758 (2000)

    Article  ADS  Google Scholar 

  13. P. Yeh: Introduction to photorefractive nonlinear optics, Wiley Ser. Pure Appl. Opt (Wiley, New York 1993)

    Google Scholar 

  14. K. Buse, S. Breer, K. Peithmann, S. Kapphan, E. Kr”atzig: Origin of thermal fixing in photorefractive lithium niobate crystals, Phys. Rev. B 56 1225–1235 (1997)

    Article  ADS  Google Scholar 

  15. S. Campbell, X. Yi, P. Ye: Hybrid sparse-wavelength angle-multiplexed optical data storage system, Opt. Lett. 19, 2161–2163 (1994)

    Article  ADS  Google Scholar 

  16. X. Zhang, J. Xu, Q. Sun, S. Liu, G. Zhang: Dual-wavelength nonvolatile holographic storage, Opt. Commun 180, 211–215 (2000)

    Article  ADS  Google Scholar 

  17. E. Krätzig: Photorefractive effects and photoconductivity in LiNbO3:Fe, Ferroelectrics 21, 635–636 (1978)

    Article  Google Scholar 

  18. E. Chuang, D. Psaltis: Storage of 1000 holograms with use of dual-wavelength method, Appl. Opt. 36, 8445–8454 (1997)

    Article  ADS  Google Scholar 

  19. X. An, D. Psaltis, G. W. Burr: Thermal fixing of 10,000 holograms in LiNbO3:Fe, Appl. Opt. 38, 386–393 (1999)

    Article  ADS  Google Scholar 

  20. S. Breer, K. Buse: Wavelength division multiplexing with volume phase holograms in photorefractive lithium niobate, Appl. Phys. B 66, 339–345 (1998)

    Article  ADS  Google Scholar 

  21. P. Boffi, M. C. Ubaldi, D. Piccinin, C. Frascolla, M. Martinelli: 1550 nm volume holography for optical communication devices, IEEE Photonics Technol. Lett. 12, 1355–1357 (2000)

    Article  ADS  Google Scholar 

  22. E. J. Lerner: Advanced applications, Holography: Holographic data storage chips away at barriers, Laser Focus World (Jan. 2000)

    Google Scholar 

  23. G. W. Burr, D. Psaltis: Effect of the oxidation state of LiNbO3:Fe on the diffraction efficiency of multiple holograms, Opt. Lett. 21, 893–895 (1996)

    Article  ADS  Google Scholar 

  24. A. Yariv, S. S. Orlov, G. A. Rakuljic: Holographic storage dynamics in lithium niobate: theory and experiment, J. Opt. Soc. Am. B 13, 2513–2523 (1996)

    Article  ADS  Google Scholar 

  25. R. Müller, L. Arizmendi, M. Carrascosa, J. M. Cabrera: Determination of H concentration in LiNbO3 by photorefractive fixing, Appl. Phys. Lett. 60, 3212–3214 (1992)

    Article  ADS  Google Scholar 

  26. G. A. Rakuljic, V. Leyva: Volume holographic narrow-band optical filter, Opt. Lett. 18(6), 453–455 (1993)

    Article  ADS  Google Scholar 

  27. V. Leyva, G. A. Rakuljic, B. O’Conner: Narrow bandwidth volume holographic optical filter operating at the Kr transition at 1547.82 nm, Appl. Phys. Lett. 65, 1079–1081 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boffi, P., Ubaldi, M.C., Piccinin, D., Martinelli, M. (2003). 1550 nm Volume Holographic Devices for Optical Communication Networks. In: Boffi, P., Piccinin, D., Ubaldi, M.C. (eds) Infrared Holography for Optical Communications. Topics in Applied Physics, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45852-2_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-45852-2_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43314-9

  • Online ISBN: 978-3-540-45852-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics