Skip to main content

Photorefractive Copper-Doped LiNbO3 Waveguides for Holography Fabricated by a Combined Technique of Ion Exchange and Ion Implantation

  • Chapter
  • First Online:
Infrared Holography for Optical Communications

Part of the book series: Topics in Applied Physics ((TAP,volume 86))

  • 250 Accesses

Abstract

We report on the fabrication and properties of photorefractive waveguides in pure or magnesium-doped lithium niobate. He+ implantation is used to form planar waveguides while an ion exchange process performs copper doping of the substrates surface. The photorefractive response of waveguides fabricated by using the two possible sequences, first ion implantation and second copper doping, and the reverse, are compared. High values of the light-induced refractive-index change and holographic sensibility are obtained. We show that beam fanning is dramatically suppressed by heavy magnesium co-doping. Fanning-free propagation is therefore possible for a wide range of in-coupled power. Steady-state diffraction efficiency of 30% is demonstrated, but higher values could be reached by proper choice of interaction length in the waveguides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Ashkin, G. D. Byd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J.J. Levinstein, K. Nassau, Appl. Phys. Lett. 9, 72 (1966)

    Article  ADS  Google Scholar 

  2. P. Boffi, M. C. Ubaldi, D. Piccinin, C. Frascolla, M. Martinelli, IEEE Photon. Technol. Lett., 12 5 (2000)

    Google Scholar 

  3. E. Wood, P. J. Cressman, R. L. Holman, C. M. Veber: Photorefractive Materials and their Applications II, ed. by P. Günter, J.-P. Huignard (Springer, Berlin, Heidelberg 1989)

    Google Scholar 

  4. K. Buse, S. Reer, K. Peithman, S. Kapphan, M. Gao, E. Krätzig: Phys. Rev. B 56, 1225 (1997)

    Article  ADS  Google Scholar 

  5. J. Huckriede, D. Kip, E. Krätzig, Appl. Phys. B 68, 1 (1999)

    Article  Google Scholar 

  6. J. Huckriede, D. Kip, E. Krätzig, Appl. Phys. B 72, 749 (2001)

    ADS  Google Scholar 

  7. K. E. Younden, S. W. James, R. W. Eason, P. J. Chandler, L. Zhang, P. D. Townsend, Opt. Lett. 17, 1509 (1992)

    Article  ADS  Google Scholar 

  8. L. Wan, Y. Yuan, G. Assanto, Opt. Commun. 74, 361 (1990)

    Article  ADS  Google Scholar 

  9. K. Itoh, K. Ikezawa, W. Watanabe, Y. Furuya, Y. Masuda, T. Toma, Opt. Express 2, 503 (1998)

    Article  ADS  Google Scholar 

  10. O. Matoba, K. Ikezawa, K. Itoh, Y. Ichioka, Opt. Rev. 2, 438 (1995)

    Article  Google Scholar 

  11. N. Y. Kamber, J. Xu, S. M. Mikha, G. Zhang, X. Zhang, G. Zhang, J. Appl. Phys. 87, 2684 (2000)

    Article  ADS  Google Scholar 

  12. S. M. Kostritskii, D. Kip, Phys. Stat. Sol. A 169, 171 (1998)

    Article  ADS  Google Scholar 

  13. K. Peithmannn, J. Huckriede, K. Buse, E. Krätzig, Phys. Rev. B 61, 4615 (2000)

    Article  ADS  Google Scholar 

  14. A. D. Novikov, S. G. Odoulov, V. M. Shandarov, S. M. Shandarov, Sov. Tech. Phys. 33, 969 (1988)

    Google Scholar 

  15. S. M. Kostritskii, O. M. Kolesnikov, J. Opt. Soc. Am. B 11, 1674 (1994)

    Article  ADS  Google Scholar 

  16. D. Kip, F. Rickermann, E. Krätzig, Opt. Lett. 20, 1139 (1995)

    Article  ADS  Google Scholar 

  17. F. Rickermann, D. Kip, B. Gather, E. Krätzig, Phys. Stat. Sol. A 150, 763 (1995)

    Article  ADS  Google Scholar 

  18. S. M. Kostritskii, D. Kip, E. Krätzig, Appl. Phys. B 65, 517 (1997)

    Article  ADS  Google Scholar 

  19. P. G. Suchoski, T. K. Findakly, F. G. Leonberger, Opt. Lett. 13, 1050 (1988)

    Article  ADS  Google Scholar 

  20. A. Boudrioua, P. Moretti, J. C. Loulergue, J. Non-Cryst. Solids 187, 443 (1995)

    Article  ADS  Google Scholar 

  21. D. Kip, B. Kemper, I. Nee, R. Pankrath, P. Moretti, Appl. Phys. B 65, 511 (1997)

    Article  ADS  Google Scholar 

  22. A. Dazzi, P. Mathey, P. Lomprä, P. Jullien, P. Moretti, D. Rytz, J. Opt. Soc. Am. B 16, 1915 (1999)

    Article  ADS  Google Scholar 

  23. S. M. Kostritskii, P. Moretti, Appl. Phys. B 68, 767 (1999)

    Article  Google Scholar 

  24. T. Tamir: Guided-wave Optoelectrics (Springer, Berlin, Heidelberg 1988)

    Google Scholar 

  25. P. D. Townsend, Nucl. B 46, 18 (1990)

    Article  Google Scholar 

  26. P. D. Townsend, P. J. Chandler, L. Zhang: Optical Effects of Ion Implantation (Cambridge Univ. Press, Cambridge 1994)

    Book  Google Scholar 

  27. A. Boudrioua, Ch. Bakouya, J. C. Loulergue, P. Moretti, K. Polgar, J. App. Phys. 89 (2001)

    Google Scholar 

  28. G. L. Destefanis, J. P. Gaillard, E. Ligeon, S. Valette, B. W. Farmery, P. D. Townsend, A. Perez, J. Appl. Phys. 50 7898 (1979)

    Article  ADS  Google Scholar 

  29. P. Moretti, P. Thevenard, K. Wirl, P. Hertel, Mater. Res. Soc. Symp. Proc. 244, 323 (1992)

    Google Scholar 

  30. T. Pliska, D. Fluck, P. Günter, L. Beckers, C. Buchal, J. Opt. Soc. Am. B 15, 628 (1998)

    Article  ADS  Google Scholar 

  31. J. F. Ziegler, J. P. Biersack, U. Littmark: The Stopping and Ranges of Ions in Solids (Pergamon, New York 1988)

    Google Scholar 

  32. U. B. Ramabadran, H. E. Jackson, Appl. Phys. Lett. 58, 672 (1991)

    Article  ADS  Google Scholar 

  33. S. M. Kostritskii, P. Moretti, J. Mugnier: Advances in photorefractive materials, effects and devices, Trends Opt. Photon. Ser. (TOPS) 27 361–367 (Opt. Soc. Am. 1999)

    Google Scholar 

  34. A. Alcazar de V., J. Rams, J. M. Cabrera, F. Agullo-Lopez, Appl. Phys. B. 68, 989 (1999)

    Article  ADS  Google Scholar 

  35. U. vanStevendaal, K. Buse, H. Malz, E. Krätzig, J. Opt. Soc. Am. B 15, 2868 (1998)

    Article  ADS  Google Scholar 

  36. K. Buse, Appl. Phys. B 64, 361 (1997)

    Google Scholar 

  37. E. Chuang, D. Psaltis, Appl. Opt. 36, 8445 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kostritskii, S.M., Moretti, P. (2003). Photorefractive Copper-Doped LiNbO3 Waveguides for Holography Fabricated by a Combined Technique of Ion Exchange and Ion Implantation. In: Boffi, P., Piccinin, D., Ubaldi, M.C. (eds) Infrared Holography for Optical Communications. Topics in Applied Physics, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45852-2_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-45852-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43314-9

  • Online ISBN: 978-3-540-45852-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics