Skip to main content

Maximum Crystal Growth Rate and Its Corresponding State in Polymeric Materials

  • Chapter
  • First Online:
Polymer Crystallization

Part of the book series: Lecture Notes in Physics ((LNP,volume 606))

Abstract

The temperature dependence of crystal growth rate (G) shows a bell shape with the maximum growth rate G max. The activation energy for the molecular transport in G could be expressed in terms of equation of either Arrhenius or WLF. The G max showed remarkable molecular weight dependence. The plots of G/G max against T/T cmax showed a single master curve without molecular weight dependence. The ratio of G o/G max gave a constant value for each polymer. Plots of ln(G/G max)/ ln(G o/G max) against T/T cmax for various polymers showed the universal curve. The molecular weight dependence of G max was expressed as G max α MW α, α was a constant but depending on the morphological features on the crystallization. The value of α was a function of the adsorption mechanism of polymer molecules on the crystal growth front and its diffusion mechanism. The ratio of T cmax/T o m was formulated. T cmax was also correlated to many other thermodynamic transition temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Turnbull, J.C. Fisher: J.Chem.Phys. 17, 71 (1949)

    Article  ADS  Google Scholar 

  2. J.D. Hoffman, J.J. Weeks: J.Chem.Phys. 37, 1723 (1962)

    Article  ADS  Google Scholar 

  3. M. Takayanagi, T. Yamashita: J.Polym.Sci. 22, 552 (1956)

    Article  ADS  Google Scholar 

  4. K. Steiner, K.J. Lucas, K. Ueberreiter: Kolloid-Z.Z.Polym. 214, 23 (1966)

    Article  Google Scholar 

  5. M. Takayanagi: J.Polym.Sci. 19, 200 (1956)

    Article  ADS  Google Scholar 

  6. J.H. Magill: J.Appl.Phys. 35, 3249 (1964)

    Article  ADS  Google Scholar 

  7. B.B. Burnett, W.F. McDevit: J.Appl.Phys. 28, 1101 (1957)

    Article  ADS  Google Scholar 

  8. F. van Antwerpen, D.W. van Krevelen: J.Poly.Sci.,B,Polym.Phys. 10, 2423 (1972)

    ADS  Google Scholar 

  9. R. Vasanthakumari, A.J. Pennings: Polymer 24, 175 (1983)

    Article  Google Scholar 

  10. T. Miyata, T. Masuko: Polymer 39, 5515 (1998)

    Article  Google Scholar 

  11. P.J. Phillips, Vantansever, Macromolecules 20, 2138 (1987)

    Article  ADS  Google Scholar 

  12. G.J. Rensch, P.J. Phillip, N. Vatanseyer: J.Polym.Sci. B24, 1943 (1986)

    Google Scholar 

  13. H. Berghmans, E. Lanza, G. Smets: J.Polym.Sci. Phys.Ed. 11, 87 (1973)

    Google Scholar 

  14. A.J. Lovinger, D.D. Davis, F.J. Padden: Polymer 26, 1595 (1985)

    Article  Google Scholar 

  15. J. Boon, G. Challa, D.W. van Krevelen: J.Poly.Sci. A-2, 6, 1791 (1968)

    Google Scholar 

  16. P.J. Lemstra, J. Postma, G. Challa: Polymer 15, 757 (1974)

    Article  Google Scholar 

  17. T. Suzuki, A.J. Kovacs: Polym.J. 1, 82 (1970)

    Article  Google Scholar 

  18. S. Umemoto, N. Okui: Polymer 43, 1423 (2002)

    Article  Google Scholar 

  19. L. Mandelkern, N.L. Jain, H. Kim: J.Polym.Sci. A-2, 6, 165 (1968)

    Google Scholar 

  20. N. Okui: Polymer Bull. 23, 111 (1990)

    Article  Google Scholar 

  21. N. Okui: Crystallization of Polymers, M. Dosiere Ed., Nato ASI Series #405, p-593 Kluwer Academic Pub., Netherlands (1993)

    Google Scholar 

  22. A. Gandica, J.H. Magill: Polymer 13, 595 (1972)

    Article  Google Scholar 

  23. J.H. Magill, H.M. Li, A. Gandica: J.Cryst.Growth 19, 361 (1973)

    Article  ADS  Google Scholar 

  24. E.G. Lovering: J.Poly.Sci. C-30, 329 (1970)

    Google Scholar 

  25. Y.K. Godovsky, G.L. Slonimsky, N.M. Garbar: J.Polym.Sci. C-38, 1–21 (1972)

    Google Scholar 

  26. M. Cortazar, G.M. Guzman: Makromol.Chem. 183, 721 (1982)

    Article  Google Scholar 

  27. M.A. Gomez, J.G. Fatou, A.Bello: Eur.Polym.J. 22, 661 (1986)

    Article  Google Scholar 

  28. J.D. Hoffman, R.L. Miller: Macromolecules 21, 3038 (1988)

    Article  ADS  Google Scholar 

  29. M. Okada, M. Nishi, M. Takahashi, H. Matsuda, A. Toda and M. Hikosaka: Polymer 39, 4535 (1998)

    Article  Google Scholar 

  30. H.L. Chen, L.J. Li, W.C. Ouyang, J.C. Hwang, W.Y. Wong: Macromolecules 30, 1718 (1987)

    Article  ADS  Google Scholar 

  31. Y.K. Godovskii: Polym.Sci.USSR 11, 2423 (1969)

    Article  Google Scholar 

  32. V.P. Privalko: Polymer 19, 1019 (1978)

    Article  Google Scholar 

  33. N. Okui: Polymer J. 19, 1309 (1987)

    Article  Google Scholar 

  34. N. Okui: J.Materils.Sci., 25, 1623 (1990)

    Article  ADS  Google Scholar 

  35. R.F. Boyer: J.Appl.Phys. 25, 825 (1954)

    Article  ADS  Google Scholar 

  36. R.G. Beaman: J.Polym.Sci. 9, 470 (1953)

    Article  ADS  Google Scholar 

  37. J.D. Hoffman, T. Davis, J.I. Lauritzen: “Treaties on Solid State Chemistry”, Vol.3, Ed., N.B. Hannay, Plenum Press, New York, p-555 (1976)

    Google Scholar 

  38. E. Vrbanovici, H.A. Scheider, H.J. Cantow: J.Polym.Sci., B, Polym.Phys., 35, 359 (1997)

    Article  ADS  Google Scholar 

  39. T. Hikima, Y. Adachi, M. Hanaya, M. Oguri: Physical Rev. 52, 3900 (1995)

    Article  ADS  Google Scholar 

  40. Y. Abe, T. Arahori, A. Naruse: J.Am.Ceramic Soc. 59, 487 (1976)

    Article  Google Scholar 

  41. E. Ergoz, J.G. Fatou, L. Madelkern: Macromolecules 5, 147 (1972)

    Article  ADS  Google Scholar 

  42. J.G. Fatou, C. Marco, L. Mandelkern: Polymer 31, 890 (1990)

    Article  Google Scholar 

  43. J.H. Magill: Polym.Lett. 6, 853 (1968)

    Article  Google Scholar 

  44. S. Umemoto, N. Okui: J.Macromol.Sci. B41, 923 (2002)

    Article  Google Scholar 

  45. E.A. DiMarzio, C.M. Guttman, J.D. Hoffman: Faraday Disc.Chem.Soc. 68, 210 (1979)

    Article  Google Scholar 

  46. P.G. de Gennes: J.Chem.Phys. 55, 672, (1971)

    Article  Google Scholar 

  47. J.I. Lauritzen, J.D. Hoffman: J.Appl.Phys. 44, 4340 (1973)

    Article  ADS  Google Scholar 

  48. W.A. Tiller: ‘The Science of Crystallization’, p-74 Cambridge University Press. (1991)

    Google Scholar 

  49. Stablization of Colloidal Dispersions by Polymer Adsorption, Ed. T. Sato, R. Richard, Surface Science series 9, p8 Marcel Dekker Inc. (1980)

    Google Scholar 

  50. N. Hikosaka: Polymer 28, 1257 (1987)

    Article  Google Scholar 

  51. J.H. Flynn: Polymer 23, 1325 (1982)

    Article  Google Scholar 

  52. D. Turnbull: J.Appl.Phys. 21, 1022 (1950)

    Article  ADS  Google Scholar 

  53. F. Spaepen: Acta Meta. 23, 729 (1975)

    Article  Google Scholar 

  54. A.S. Skapski: J.Chem.Phys. 16, 386 (1948)

    Article  ADS  Google Scholar 

  55. N. Okui: Polymer Crystal, Science One Point #4, Kyouritu Shuppan (1993)

    Google Scholar 

  56. J.H. Gibbs, E.A. DiMarzio: J.Chem.Phys. 28, 373 (1958)

    Article  ADS  Google Scholar 

  57. W.A. Lee, G.J. Knight: Br.Polym.J. 2, 73 (1970)

    Article  Google Scholar 

  58. S. Sakka, J.D. Mackenzie: J.Non-Cryst.Solids. 6, 145 (1971)

    Article  ADS  Google Scholar 

  59. D.W. van Krevelen: ‘Properties of Polymers’, Elsevier Sci.Pub.Co. Chap. 4, 16, (1976)

    Google Scholar 

  60. R. Shimha, R.F. Boyer: J.Chem.Phys. 37, 1003 (1962)

    Article  ADS  Google Scholar 

  61. R.F. Boyer: J.Polym.Sci.Symp. 50, 189 (1975)

    Article  Google Scholar 

  62. A.B. Bestul, S.S. Chang: J.Chem.Phys. 40, 3731 (1964)

    Article  ADS  Google Scholar 

  63. A. Adam, J.H. Gibbs: J.Chem.Phys. 43, 139 (1965)

    Article  ADS  Google Scholar 

  64. V.A. Bershtein, V.M. Egrov: Differential Scanning Calorimetry of Polymers, Ellis Horwood Ltd. (1994)

    Google Scholar 

  65. A. Utracki: J.Macromol.Sci.Phys. B10, 477 (1974)

    Google Scholar 

  66. N. Okui: Polymer, 31, 92 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Okui, N., Umemoto, S. (2003). Maximum Crystal Growth Rate and Its Corresponding State in Polymeric Materials. In: Reiter, G., Sommer, JU. (eds) Polymer Crystallization. Lecture Notes in Physics, vol 606. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45851-4_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-45851-4_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44342-1

  • Online ISBN: 978-3-540-45851-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics