Skip to main content

A Computational Model for Processing of Semicrystalline Polymers: The Effects of Flow-Induced Crystallization

  • Chapter
  • First Online:
Book cover Polymer Crystallization

Part of the book series: Lecture Notes in Physics ((LNP,volume 606))

Abstract

A computational model for the combined processes of quiescent and flow-induced crystallization of polymers is presented. This modelling should provide the necessary input data, in terms of the structure distribution in a product, for the prediction of mechanical properties and shape- and dimensional-stability. Rather then the shear rate as the driving force, a viscoelastic approach is proposed, where the viscoelastic stress (or the equivalent recoverable strain) with the highest relaxation time, a measure for the molecular orientation and stretch of the high end tail molecules, is the driving force for flow induced crystallization. Thus, the focus is on the polymer that experiences the flow, rather then on the flow itself. Results are presented for shear flow, extensional flow and for injection moulding conditions of an isotactic Polypropylene (iPP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Gahleitner, C. Bachner, E. Ratajski and G. Rohaczek: J. Appl. Pol. Sci., 73 (1999)

    Google Scholar 

  2. D.W. Mead: J. Rheology, 38, 6 (1994)

    Google Scholar 

  3. C. Pattamaprom, R.G. Larson and T.J. van Dyke: Rheol. Acta, 39 (2000)

    Google Scholar 

  4. G. Eder and H. Janeschitz-Kriegl, In: Materials Science and Technology: A Comprehensive Treatment: Processing of Polymers, 18, ed. by H.E.H Meijer, Crystallization, (VCH, Weinheim 1997) pp 269–342

    Google Scholar 

  5. H. Zuidema, Flow induced crystallization of polymers. Application to injection moulding, PhD Thesis, Eindhoven University of Technology, The Netherlands (2000)

    Google Scholar 

  6. N.J. Inkson, T.C.B. McLeish, O.G Harlen and D.J. Groves: Modelling the rheology of low density polyethylene in shear and extension with the multi-modal Pom-Pom constitutive equation, Proc. PPS 15,’ s Hertogenbosch, the Netherlands (1999)

    Google Scholar 

  7. T.C.B. McLeish and R.G. Larson: J. Rheol., 42, 1 (1998)

    Article  Google Scholar 

  8. W.H.M. Verbeeten, G.W.M. Peters and F.P.T. Baaijens: J. Rheol., 45, 4, (2001)

    Google Scholar 

  9. G.W.M. Peters Thermorheological modelling of viscoelastic materials, In: IUTAM Symposium on Numerical Simulation of Non-Isothermal Flow of Viscoelastic Liquids: Fluid Mechanics and its Applications, Proc. IUTAM Symposium, Kerkrade, The Netherlands, 1–3 November 1993 ed. by J.F. Dijksman and G.D.C. Kuiken, (Kluwer Academic Publishers 1995),28, pp 21–35

    Google Scholar 

  10. G.W.M. Peters and F.P.T. Baaijens: J. Non-Newt. Fluid Mech., 68 (1997)

    Google Scholar 

  11. W.H.M. Verbeeten, Computational Polymer Melt Rheolgy, PhD Thesis, Eindhoven University of Technology, The Netherlands (2001)

    Google Scholar 

  12. R.G. Larson, Constitutive Equations for Polymer Melts and Solutions (Butterworths, London 1988)

    Google Scholar 

  13. R.B. Bird, C.F¿ Curtiss, R.C. Armstrong and O. Hassager, Dynamics of Polymeric Liquids (John Wiley and Sons, New York 1987)

    Google Scholar 

  14. W. Schneider, J. Berger and A. Köppl, In: Physico-Chemical Issues in Polymers, Non-isothermal crystallization of polymers: Application of Rate Equations, (Technomic Publ. Co 1993), pp 1043–1054

    Google Scholar 

  15. W. Schneider, A. Köppl and J. Berger: Int. Pol. Proc. II, 3 (1988)

    Google Scholar 

  16. H. Zuidema, G.W.M. Peters and H.E.H. Meijer, Macromol.Theory and Simulations, 10, 5, (2001)

    Google Scholar 

  17. F.H.M.S. Swartjes, Stress Induced Crystallization in Elongational Flow, PhD Thesis, Eindhoven University of Technology, The Netherlands (2001)

    Google Scholar 

  18. P. Jerschow, Crystallization of polypropylene. New experiments, evaluation methods and choice of material compositions, PhD Thesis, Johannes Kepler Universit, Linz, Austria (1994)

    Google Scholar 

  19. R.R. Lagasse and B. Maxwell: Pol. Eng. Sci., 3, 16 (1976)

    Google Scholar 

  20. S. Vleeshouwers and H.E.H. Meijer: Rheol. Acta, 35 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peters, G.W. (2003). A Computational Model for Processing of Semicrystalline Polymers: The Effects of Flow-Induced Crystallization. In: Reiter, G., Sommer, JU. (eds) Polymer Crystallization. Lecture Notes in Physics, vol 606. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45851-4_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-45851-4_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44342-1

  • Online ISBN: 978-3-540-45851-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics