Advertisement

Development of CL for Semiconductor Research, Part III: Study of Degradation Mechanisms in Compound Semiconductor-Based Devices by SEM-CL

  • G. Salviati
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 588)

Abstract

The advantages offered by the depth resolved spectral analysis of the CL technique are presented. In particular, GaAs-based heterojunction bipolar transistors and and InP-based high electron mobility transistors are studied to respectively reveal Be outdiffusion from the base and kink phenomena in the I-V characteristics after bias aging. GaAs-based solar cells are also investigated to show the correlation between dislocations and impurity gettering. Finally the limits of the technique are briefly discussed.

Keywords

Thick GaAs IEDM Tech Semiconductor Research Electrical Degradation Rutherford Backscatter Spec 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. G. Yacobi and D. B. Holt, J. Appl. Phys. 59 (1986) 1.CrossRefGoogle Scholar
  2. 2.
    A. Gustafsson, M. Pistol, L. Montelius, L. Samuelson, J. Appl. Phy. 84 (1998) 661.CrossRefGoogle Scholar
  3. 3.
    C. Donolato, Phys. Status Solidi (a) 141 (1994) 131.CrossRefGoogle Scholar
  4. 4.
    D. Bimberg and J. Christen, Inst. Phys. Conf. Ser. 134 (1993) 629.Google Scholar
  5. 5.
    F. Fantini, G. Salviati, M. Borgarino, L. Cattani, P. Cova, L. Lazzarini, C. Zanotti-Fregonara, Inst. Phis. Conf. Ser. 160 (1997) 503.Google Scholar
  6. 6.
    B. G. Yacobi and D. B. Holt, Cathodoluminescence Microscopy of Inorganic Solids, Plenum Press, NY, (1990).Google Scholar
  7. 7.
    V. I. Petrov, Phys. Status Solidi (a) 133 (1992) 189; Physics Symposium 1998, Reno, Nevada March30–April 2, (1998) pp113-118.CrossRefGoogle Scholar
  8. 8.
    A. C. Papadopoulo, C. Dubon-Chevallier, J. F. Brasse, Scanning Microscopy 6 (1992) 97.Google Scholar
  9. 9.
    K. Mochizuki, S. Isomae, H. Masuda, T. Tanoue, C. Kusano, Jpn. J. Appl. Phys. 31 (1992) 751.CrossRefGoogle Scholar
  10. 10.
    L. Pavesi, M. Guzzi, J. Appl. Phys. 75 (1994) 4779.CrossRefGoogle Scholar
  11. 11.
    M. Uematsu, K. Wada, Appl. Phys. Lett. 58 (1991) 2015.CrossRefGoogle Scholar
  12. 12.
    M. Borgarino, G. Salviati, L. Cattani, L. Lazzarini, C. Zanotti Fregonara, F. Fantini, A. Carnera, Journal of Physics D (1998) 3004.Google Scholar
  13. 13.
    G. Meneghesso, D. Buttari, E. Perin, C. Canali, E. Zanoni, IEDM Tech. Dig. (1998) 227.Google Scholar
  14. 14.
    T. Suemitsu, T. Enoki, M. Tomizawa, N. Shigekawa, Y. Ishii, IPRM Proc. (1998) 365.Google Scholar
  15. 15.
    C. Meneghesso, R. Luise, D. Buttari, A. Chini, H. Kokoyama, T. Suemitsu, E. Zanoni, Microel. and Reliability 40 (2000) 1715.CrossRefGoogle Scholar
  16. 16.
    M. H. Somerville, J. A. Del Alamo, W. Hoke, IEDM Tech. Dig. (1995) 201.Google Scholar
  17. 17.
    R. Menozzi, M. Borgarino, Y. Baeyens, M. Van Hove, F. Fantini, IEEE Trans. Mirow. Guid. Lett. 3 (1997) 1009.Google Scholar
  18. 18.
    C. Canali, A. Paccagnella, P. Pisoni, C. Tedesco, P. Telaroli, E. Zanoni, IEEE Trans. Electron. Dev. ED-38 (1991) 2571.CrossRefGoogle Scholar
  19. 19.
    P. Cova, G. Meneghesso, G. Salviati, E. Zanoni, Micr. Reliab. 39 (1999) 1073.CrossRefGoogle Scholar
  20. 20.
    P. H. Ladbrooke and S. R. Blight, IEEE Trans. Electron. Dev. ED-35 (1988) 257.CrossRefGoogle Scholar
  21. 21.
    G. Salviati, C. Zanotti-Fregonara, M. Borgarino, L. Lazzarini, L. Cattani, P. Cova, M. Mazzer, Microel. Reliab. 38 (1998) 1199.CrossRefGoogle Scholar
  22. 22.
    G. Zandler, L. Rossi, A. DiCarlo, L. Tocca, A. Bonfiglio, M. Brunori, P. Lugli, G. Meneghesso, E. Zanoni, Physica B 272 (1999) 558.CrossRefGoogle Scholar
  23. 23.
    N. Maeda, H. Ito, T. Enoki, Y. Ishii, J. Appl. Phys. 81 (1997) 1552.CrossRefGoogle Scholar
  24. 24.
    S. Bahl and J. A. del Alamo, IEEE Electron. Dev. Lett. 13 (1992) 123.CrossRefGoogle Scholar
  25. 25.
    A. Di Carlo, S. Pescetelli, M. Paciotti, P. Lugli, Solid State Comm. 98 (1996) 803.CrossRefGoogle Scholar
  26. 26.
    G. Meneghesso, T. Grave, M. Manfredi, M. Pavesi, C. Canali, E. Zanoni, IEEE Trans. Electron. Dev. 47 (2000) 2.CrossRefGoogle Scholar
  27. 27.
    K. Watanabe and H. Yokoyama, Appl. Phys. Lett. 76 (2000) 973.CrossRefGoogle Scholar
  28. 28.
    C. V. B. Tribuzy, B. Yavich, P. L. Souza, J. G. Menchero, J. Vac. Sci. Techol. B 18 (2000) 741.CrossRefGoogle Scholar
  29. 29.
    R. Bath, M. A. Koza, K. Kash, S. J. Allen, W. P. Hong, S. A. Scwarz, G. K. Cang, P. Lin, J. Cryst. Growth 108 (1991) 441.CrossRefGoogle Scholar
  30. 30.
    P. L. Souza, E. V. K. Rao, F. Alexandre, M. Gauneau, J. Appl. Phys. 64 (1988) 444.CrossRefGoogle Scholar
  31. 31.
    M. A. Green et al. Progress in Photovoltaics: Research and Applications 6 (1998) 35.CrossRefGoogle Scholar
  32. 32.
    L. Panepinto, U. Zeimer, W. Seifert, M. Seibt, F. Bugge, M. Weyers, W. Schrter, Mat. Sci. Eng. B 42 (1996) 77.CrossRefGoogle Scholar
  33. 33.
    P. Griffrin et al. Proc. 14th European Photovoltaic Solar Energy Conf., Barcelona (1997) pp.1732–1740.Google Scholar
  34. 34.
    M. Mazzer, PhD Thesis work, Imperial College of Science Technology and Medicine, University of London, UK (1998).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • G. Salviati
    • 1
  1. 1.CNR-MASPEC, Parco Area delle Scienze 37aParmaItaly

Personalised recommendations