Advertisement

Electronic Properties of Polycrystalline and Amorphous WO3 Investigated with Scanning Tunnelling Spectroscopy

  • L. Ottaviano
  • E. Maccallini
  • S. Santucci
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 588)

Abstract

The potential of Scanning Tunnelling Spectroscopy in the investigation of the local electronic properties of materials used as gas sensors is presented and discussed, focusing on the case of polycrystalline and amorphous WO3. By taking I-V curves it can be evidenced, with sub-nanometer spatial resolution, the difference in the conductivity measured at the boundaries and on the surface of individual nanoparticles. This experimental information can be used to derive an unprecedented detailed microscopic picture of the electric behaviour of such materials. Accordingly new models for the gas sensing mechanism of thin films of WO3 and other similar metal-oxide semiconductors can be proposed.

Keywords

Interstitial Region Scan Tunnelling Spectroscopy Crystallite Boundary Scan Tunnelling Spectroscopy Measure Local Electronic Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel: Appl. Phys. Lett. 40, 178 (1982).CrossRefGoogle Scholar
  2. 2.
    E. L. Wolf: Principles of Electron Tunneling Spectroscopy (Clarendon, Oxford 1985).Google Scholar
  3. 3.
    C. Cantalini, H. T. Sun, M. Faccio, M. Pelino, S. Santucci, L. Lozzi, M. Passacantando: Sensors and Actuators B 31, 81 (1996).CrossRefGoogle Scholar
  4. 4.
    V. Golovanov, V. Smynthyna: Sensors and Actuators B 24, 647 (1995).CrossRefGoogle Scholar
  5. 5.
    W. Gopel, K. D. Schierbaum: Sensors and Actuators B 26, 1 (1995).CrossRefGoogle Scholar
  6. 6.
    X. Wang, S. S. Yee, W. P. Carey: Sensors and Actuators B 24, 454 (1995).CrossRefGoogle Scholar
  7. 7.
    L. Ottaviano, L. Lozzi, M. Passacantando, and S. Santucci: Surf. Sci. 475, 73 (2001); L. Ottaviano, E. Maccallini, and S. Santucci: Surf. Sci. 492, L700 (2001).CrossRefGoogle Scholar
  8. 8.
    S. Santucci, L. Lozzi, E. Maccallini, M. Passacantando, C. Cantalini, and L. Ottaviano: J. Vac. Sci. Technol. A 19, 1467 (2001).CrossRefGoogle Scholar
  9. 9.
    R. J. Hamers, R. M. Tromp, J. E. Demuth: Phys. Rev. Lett. 56, 1972 (1986).CrossRefGoogle Scholar
  10. 10.
    E. Stoll: Surf. Sci. 143, L411 (1984).CrossRefGoogle Scholar
  11. 11.
    S. Santucci, L. Lozzi, M. Passacantando, L. Odorisio, C. Cantalini: J. Vac. Sci. Technol. A 17, 1639 (1999).CrossRefGoogle Scholar
  12. 12.
    R. A. Dixon, J. J. Williams, D. Morris, J. Rebane, F. H. Jones, R. G. Egdell, S. W. Downes: Surf. Sci. 399, 199 (1998).CrossRefGoogle Scholar
  13. 13.
    H.-J. Guntherodt and R. Wiesendanger (eds.), in Scanning Tunneling Microscopy I, p.23, (Springer-Verlag 1994).Google Scholar
  14. 14.
    S. Santucci, C. Cantalini, M. Crivellari, L. Lozzi, L. Ottaviano, M. Passacantando: J. Vac. Sci. Technol. A 18, 1077 (2000).CrossRefGoogle Scholar
  15. 15.
    K. Kosuge: Chemistry of Non-Stoichiometric Compounds (Oxford University Press, Oxford, 1994).Google Scholar
  16. 16.
    F. H. Jones, R. A. Dixon, A. Brown: Surf. Sci. 369, 343 (1996).CrossRefGoogle Scholar
  17. 17.
    J. B. Goodenough: Prog. Solid State Chem. 5, 145 (1971).CrossRefGoogle Scholar
  18. 18.
    A. Gulino, S. Parker, F. H. Jones, R. G. Egdell: J. Chem. Soc. Faraday Trans. 92, 2137 (1996).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • L. Ottaviano
    • 1
  • E. Maccallini
    • 1
  • S. Santucci
    • 1
  1. 1.INFM Unit and Physics DepartmentUniversity of L’AquilaCoppito L’AquilaItaly

Personalised recommendations