Electronic-Excitation-Induced Enhancement in Metallicity on HOPG and Si Surfaces: In Situ STM/STS Studies

  • J. P. Singh
  • D. Kanjilal
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 588)


Surfaces of highly oriented pyrolytic graphite (HOPG) and hydrogen passivated H-Si(111) after swift heavy ion (200MeV Au+13 and Ag+14 ions) irradiation have been investigated by home made in-situ high va cuum scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) techniques attached with the materials science beam line at the 15 MV Pelletron accelerator. The STM topographic images show the delocalization of the electronic states after swift heavy ion irradiation. A (2x1) phase transformation has been observed on H-Si(111) surface after 200MeV Ag+14 irradiation at 5x1012 ions cm2 fluence. The spectroscopy results show approximately linear variation of tunneling current with bias voltage for irradiated HOPG surface whereas it retain the non-linear characteristics for H-Si(111) after irradiation. The Ohmic behaviour of I-V curve along with the delocalization of the covalent bonded electronic wavefunctions suggests the enhancement of the metallicity of the covalent bonds on these surfaces after irradiation. This is attributed to the electronic excitation induced instability in lattice phonons.


Bias Voltage Scanning Tunneling Microscopy Tunneling Current Ultra High Vacuum Highly Orient Pyrolytic Graphite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I.H. Wilson, N.J. Zheng, U. Knipping, I.S.T. Tsong: J. Vac. Sci. Technol. A 7, 2840 (1989)CrossRefGoogle Scholar
  2. 2.
    L.P. Biro, B. Szabo, G.I. Mark, J. Gyulai, K. Havancsak, K. Kurti, A. Dunlop, L. Frey, H. Ryssel: Nucl. Inst. and Meth. B 148, 1102 (1999)CrossRefGoogle Scholar
  3. 3.
    Y. Wang, Y. Kang, W. Zhao, S. Yan, P. Zhai, X.J. Tang: J. Appl. Phys. 83, 1341 (1998)CrossRefGoogle Scholar
  4. 4.
    E.A. Eklund, E.J. Snyder, R.S. Williams: Surf. Sci. 285, 157 (1993)CrossRefGoogle Scholar
  5. 5.
    J.P. Singh, R. Singh, D. Kanjilal, N.C. Mishra, V. Ganesan: J. Appl. Phys. 87, 2742 (2000)CrossRefGoogle Scholar
  6. 6.
    V. Heine, J.A. Van Vechten: Phys. Rev. B 13, 1622 (1976)CrossRefGoogle Scholar
  7. 7.
    P. Stampfli: Nucl. Inst. and Meth. B 107, 138 (1996)CrossRefGoogle Scholar
  8. 8.
    J. Ishikawa, H. Tsuji, K. Kameyama, S. Shimada, Y. Gotoh: Appl. Surf Sci. 100/101, 370 (1996)CrossRefGoogle Scholar
  9. 9.
    J.P. Singh, A. Tripathi, D. Kanjilal: Vacuum 57, 319 (2000)CrossRefGoogle Scholar
  10. 10.
    V.L. Thanh, d. Bouchier, G. Hincelin: J. Appl. Phys. 87, 3700 (2000)CrossRefGoogle Scholar
  11. 11.
    D. Kanjilal, S. Chopra, M.M. Narayanan, I.S. Iyer, V Jha, R. Joshi, S.K. Datta: Nucl. Inst. and Meth. A 238, 97 (1993)CrossRefGoogle Scholar
  12. 12.
    V.Y. Aristov, L. Douillard, O. Fauchoux, P. Soukiassian: 79, 3700 (1997)Google Scholar
  13. 13.
    J.F. Ziegler, J.P. Biersack, U. Littmark: Stopping and Ranges of Ions in Matter (Pergamon, New York 1985)Google Scholar
  14. 14.
    M. Toulemonde, C. Dufour, E. Paumier: Phys. Rev. B 46, 14362 (1993)CrossRefGoogle Scholar
  15. 15.
    J.A. Stroscio, R.M. Feenstra, A.P. Fein: Phys. Rev. Lett. 57, 2579 (1986)CrossRefGoogle Scholar
  16. 16.
    W.A. Harrison: Electronic Struture and the Properties of Solids (Dover Publications, New York )Google Scholar
  17. 17.
    M. McEllistrem, G. Hasse, D. Chen, R.J. Hamers: Phys. Rev. Lett. 70, 2471 (1993)CrossRefGoogle Scholar
  18. 18.
    V. Ramchandran, R.M. Feenstra: Phys. Rev. Lett. 82, 1000 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • J. P. Singh
    • 1
  • D. Kanjilal
    • 1
  1. 1.Nuclear Science CentreNew DelhiIndia

Personalised recommendations