Skip to main content

Direct Imaging of InGaAs Quantum Dot States by Scanning Tunneling Spectroscopy

  • Conference paper
  • First Online:
Nanoscale Spectroscopy and Its Applications to Semiconductor Research

Part of the book series: Lecture Notes in Physics ((LNP,volume 588))

  • 620 Accesses

Abstract

A combination of scanning tunneling microscopy and spectroscopy has been employed to directly image the charge density of the confined electronic states of In0.5Ga0.5As quantum dots produced by epitaxial Stranski-Krastinov growth. Room temperature measurements have been made of intact, uncapped quantum dots, in a planar geometry. The tunneling current images have been compared with calculated tunneling current profiles and the observed tunneling current contrast has been associated with the localized quantum dot states and the delocalized wetting layer states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. M. Feenstra, J. A. Stroscio, J. Terso., A. P. Fein, Phys. Rev. Lett. 58, 1192 (1987); C. Joachim, J. K. Gimzewski, R. Schlittler, and C. Chavvy, Phys. Rev. Lett. 74, 2102 (1995); P. G. Collins, J. C. Grossman, M. Cote, M. Ishigami, C. Piskoti, S. G. Louie, M. L. Cohen, and A. Zettl, Phys. Rev. Lett. 82, 2102 (2000).

    Article  CAS  Google Scholar 

  2. A. Zrenner, J. of Chem. Phys. 112, 7790 (2000).

    Article  CAS  Google Scholar 

  3. A. Passaseo, G. Maruccio, M. De Vittorio, R. Rinaldi, R. Cingolani, and M. Lomascolo, Appl. Phys. Lett. 78, 1382 (2001).

    Article  CAS  Google Scholar 

  4. T. Lundstrom, W. Schoenfeld, H. Lee, and P. M. Petroff, Science 286, 2312 (1999).

    Article  CAS  Google Scholar 

  5. R. Rinaldi, S. Antonaci, M. DeVittorio, R. Cingolani, U. Hohenester, E. Molinari, H. Lipsanen, and J. Tulkki, Phys. Rev. B. 62, 1492 (2000).

    Article  Google Scholar 

  6. J. Shumway, A. J. Williamson, A. Zunger, A. Passaseo, M. DeGiorgi, R. Cingolani, M. Catalano, and P. Crozier, Phys. Rev. B., submitted.

    Google Scholar 

  7. M. De Giorgi, A. Passaseo, R. Cingolani, A. Taurino, and M. Catalano, Phys. Rev. B. (submitted).

    Google Scholar 

  8. C. B. Duke, Tunneling in Solids, (New York, London: Academic).

    Google Scholar 

  9. J. Tersoff and D.R. Hamann, Phys. Rev. B. 31, 805 (1985).

    Article  CAS  Google Scholar 

  10. A. Franceschetti and A. Zunger, Phys. Rev. B. 62, 2614 (2000).

    Article  CAS  Google Scholar 

  11. A. Zur, T. C. McGill, and D. L. Smith, Phys. Rev. B. 28, 2060 (1983).

    Article  CAS  Google Scholar 

  12. Ph. Lelong, O. Heller, and G. Bastard, Solid State Electr. 42, 1251 (1998).

    Article  CAS  Google Scholar 

  13. S. Hameau, Y. Guldner, O. Verzelem, R. Ferreira, G. Bastard, J. Zeman, A. Lemaitre, and J. M. Gerard, Phys. Rev. Lett. 83, 4152 (1999).

    Article  CAS  Google Scholar 

  14. A. Vasanelli, M. De Giorgi, R. Ferreira, R. Cingolani, and G. Bastard, Physica E, in press.

    Google Scholar 

  15. R. Wiesendanger, Scanning Probe Microsocpy and Spectroscopy, Cambridge University Press (1998).

    Google Scholar 

  16. X. de la Broïse, C. Delerue, M. Lannoo, B. Grandidier, and D. Stiévenard, Phys. Rev. 61, 2138 (2000).

    Article  Google Scholar 

  17. R. Heitz, M. Veit, N. N. Ledenstov, A. Hoffmann, D. Bimberg, V. M. Ustinov, P. S. Kopev, and Zh. I. Alferov, Phys. Rev. 56, 10435 (1997).

    Article  CAS  Google Scholar 

  18. R. Ferreira and G. Bastard, Appl. Phys. Lett. 74, 2818 (1999).

    Article  CAS  Google Scholar 

  19. C. M. Kapteyn, M. Lion, R. Heitz, D. Bimberg, P. N. Brunkov, B. V. Volovik, S. G. Konnikov, A. R. Kovsh, and V. M. Ustinov, Appl. Phys. Lett. 76, 1573 (2000).

    Article  CAS  Google Scholar 

  20. H. A. Fertig, Phys. Rev. B 65, 2321 (1990).

    Article  Google Scholar 

  21. J. Martorell, D. W. L. Sprung, P. A. Machado, and C. G. Smith, Phys. Rev. 63, 045325 (2001).

    Article  CAS  Google Scholar 

  22. B. Grandidier, Y. M. Niquet, B. Legrand, J. P. Nys, C. Priester, D. Stiévenard, J. M. Gerard, and V. Thierry-Mieg, Phys. Rev. Lett. 85, 1068, (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Johal, T.K. et al. (2002). Direct Imaging of InGaAs Quantum Dot States by Scanning Tunneling Spectroscopy. In: Watanabe, Y., Salviati, G., Heun, S., Yamamoto, N. (eds) Nanoscale Spectroscopy and Its Applications to Semiconductor Research. Lecture Notes in Physics, vol 588. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45850-6_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-45850-6_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43312-5

  • Online ISBN: 978-3-540-45850-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics