Advertisement

Manipulating, Reacting, and Constructing Single Molecules with a Scanning Tunneling Microscope Tip

  • S. -W. Hla
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 588)

Abstract

The fascinating advances in atom and molecule manipulation with the scanning tunneling microscope (STM) tip allow scientists to fabricate artificial atomic scale structures, to study local quantum phenomena, or to probe physical and chemical properties of single atoms and molecules on surfaces. Recent achievements in individual synthesis of single molecules with the STM tip further open up an entirely new opportunities in nanoscience and technology. The STM manipulation techniques useful in the molecular construction are reviewed and prospects for future opportunities of single molecule chemical engineering and their possible implications to nano-scale science and technology are discussed.

Keywords

Scanning Tunneling Microscope Single Molecule Single Atom Basic Building Block Scanning Tunneling Microscope Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Joachim, J.K. Gimzewski, A. Aviram: Nature 408, 541 (2000).CrossRefGoogle Scholar
  2. 2.
    A. Aviram, M. Ratner: Chem. Phys. Lett. 29, 277 (1974).CrossRefGoogle Scholar
  3. 3.
    C. Joachim, J.K. Gimzewski: Chem. Phys. Lett. 265, 353 (1997).CrossRefGoogle Scholar
  4. 4.
    S.J. Tans, A.R.M. Verschueren, C. Dekker: Nature 393, 49 (1997).Google Scholar
  5. 5.
    D.M. Eigler, C.P. Lutz, W.E. Rudge: Nature 352, 600 (1991).CrossRefGoogle Scholar
  6. 6.
    F. Moresco, G. Meyer, K.-H. Rieder: Phys. Rev. Lett. 85, 298 (2000).CrossRefGoogle Scholar
  7. 7.
    G. Leatherman et al.: J. Phys. Chem. B 103, 4006 (1999).CrossRefGoogle Scholar
  8. 8.
    M. Dorogi, J. Gomez, R. Osifchin, R.P. Andres, R. Reifenberger: Phys. Rev. B 52, 9071 (1995).CrossRefGoogle Scholar
  9. 9.
    L. A. Bumm et al.: Science 271, 1705 (1996).CrossRefGoogle Scholar
  10. 10.
    S.-W. Hla, L. Bartels, G. Meyer, K.-H. Rieder: Phys. Rev. Lett. 85, 2777 (2000).CrossRefGoogle Scholar
  11. 11.
    G. Dujardin, R.E. Walkup, Ph. Avouris: Science 255, 1232 (1992).CrossRefGoogle Scholar
  12. 12.
    R. Martel, Ph. Avouris, I.-W. Lyo: Science 272, 385 (1996).CrossRefGoogle Scholar
  13. 13.
    J.W. Gadzuk: Surf. Sci. 342, 345 (1995).CrossRefGoogle Scholar
  14. 14.
    B. C. Stipe et al.: Phys. Rev. Lett. 78, 4410 (1997).CrossRefGoogle Scholar
  15. 15.
    D.M. Eigler, E.K. Schweizer: Nature 344, 524 (1990).CrossRefGoogle Scholar
  16. 16.
    L. Bartels, G. Meyer, K.-H. Rieder: Phys. Rev. Lett. 79, 697 (1997).CrossRefGoogle Scholar
  17. 17.
    S.-W. Hla, A. Kühnle, L. Bartels, G. Meyer, K.-H. Rieder: Surf. Sci. 454–456, 1079 (2000).CrossRefGoogle Scholar
  18. 18.
    T.A. Jung, R.R. Schlittler, J.K. Gimzewski, H. Tang, C. Joachim: Science 271, 181 (1996).CrossRefGoogle Scholar
  19. 19.
    S.-W. Hla, A. Kühnle, G. Meyer, K.-H. Rieder: submitted to Phys. Rev. B.Google Scholar
  20. 20.
    J.A. Stroscio, D.M. Eigler: Science 254, 1319 (1991).CrossRefGoogle Scholar
  21. 21.
    L. Bartels et al.: Phys. Rev. Lett. 80, 2004 (1998).CrossRefGoogle Scholar
  22. 22.
    G. Meyer, S. Zöphel, K.-H. Rieder: Appl. Phys. A 63, 557 (1996).CrossRefGoogle Scholar
  23. 23.
    L. Bartels, G. Meyer, K.-H. Rieder: Appl. Phys. Lett. 71, 213 (1997).CrossRefGoogle Scholar
  24. 24.
    H.J. Lee, W. Ho: Science 286, 1719 (1999).CrossRefGoogle Scholar
  25. 25.
    F. Ullmann, G. M. Meyer, O. Loewenthal, O. Gilli: Annalen der Chemie 331, 38 (1904).Google Scholar
  26. 26.
    S. W. Hla, unpublished result.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • S. -W. Hla
    • 1
  1. 1.Department of Physics and AstronomyOhio UniversityAthensUSA

Personalised recommendations