Novel Tuning Fork Sensor for Low-Temperature Near-Field Spectroscopy

  • A. Crottini
  • J. L. Staehli
  • B. Deveaud
  • X. L. Wang
  • M. Ogura
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 588)


A SNOM apparatus working at liquid-He temperatures has been realized and characterized. Standard optical facilities allow for a combined spatial and spectral analysis of the photoluminescence emissions in semiconductors. A novel distance control system is used. The sensitivity in the approach direction is 0.2 nm, and quality factors up to 2850 have been obtained. No electronic components are needed close to the sensor, allowing to employ it in a liquid He environment. The system is extremely compact and allows for several hours stability at 5 K.


Nonradiative Recombination Optical Resolution Distance Control Quartz Tuning Fork Spectral Emission Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig: Rev. Sci. Instr. 65, 626 (1994)CrossRefGoogle Scholar
  2. 2.
    J. Levy, V. Nikitin et al.: J. Appl. Phys. 79, 6095 (1996)CrossRefGoogle Scholar
  3. 3.
    Y. Durand, J. C. Woehl et al.: Rev. Sci. Instr. 70, 1318 (1999)CrossRefGoogle Scholar
  4. 4.
    H. F. Hess, E. Betzig et al.: Science 264, 1740 (1994)CrossRefGoogle Scholar
  5. 5.
    Y. Toda, S. Shinomori, K. Suzuki, Y. Arakawa: Solid State Electronics 42, 7 (1998)CrossRefGoogle Scholar
  6. 6.
    K. Karrai, R. D. Grober: Appl. Phys. Lett. 66, 1842 (1995)CrossRefGoogle Scholar
  7. 7.
    W. Gohde, J. Tittel et al.: Rev. Sci. Instr. 68, 2466 (1997)CrossRefGoogle Scholar
  8. 8.
    G. Behme, A. Richter, M. Suptitz, C. Lienau: Rev. Sci. Instr. 68, 3458 (1997)CrossRefGoogle Scholar
  9. 9.
    H. Ghaemi, C. Cates, B. B. Goldberg: Ultramicroscopy 57, 2 (1995)CrossRefGoogle Scholar
  10. 10.
    J. Rychen, T. Ihn et al.: Rev. Sci. Instr. 70, 2765 (1999)CrossRefGoogle Scholar
  11. 11.
    K. B. Shelimov, D. N. Davydov, M. Moskovits: Rev. Sci. Instr. 71, 437 (2000)CrossRefGoogle Scholar
  12. 12.
    R. D. Grober, J. Acimovic et al.: Rev. Sci. Instr. 71, 2776 (2000)CrossRefGoogle Scholar
  13. 13.
    D. R. Turner: Etch procedure for optical fibers, US-patent 4’469’554, (1983)Google Scholar
  14. 14.
    P. Hoffmann, B. Dutoit, R.-P. Salathé: Ultramicroscopy 61, 165 (1995)CrossRefGoogle Scholar
  15. 15.
    X. L. Wang, M. Ogura, H. Matsuhata: Appl. Phys. Lett. 66, 1506 (1995)CrossRefGoogle Scholar
  16. 16.
    A. Crottini, J. L. Staehli et al.: Phys. Rev. B 63, 121313(R) (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • A. Crottini
    • 1
  • J. L. Staehli
    • 1
  • B. Deveaud
    • 1
  • X. L. Wang
    • 2
  • M. Ogura
    • 2
  1. 1.Physics DepartmentSwiss Federal Institute of Technology LausanneLausanne-EPFLSwitzerland
  2. 2.Electrotechnical LaboratoryTsukuba, IbarakiJapan

Personalised recommendations