Advertisement

Long-Term Oxidation Behaviour of Lead Sulfide Surfaces

  • K. C. Prince
  • S. Heun
  • L. Gregoratti
  • A. Barinov
  • M. Kiskinova
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 588)

Abstract

We have applied nanospectroscopy to examine the surface oxidation of the prototypic mineral lead sulfide in two states: ‘oxidised’ (oxidised in air for one year); and ‘clean’ (cleaved in air and inserted into the vacuum system within about 10 minutes). The elements detected on the surfaces were Pb, S, O, Cl (a natural impurity) and C (adventitious or natural, carbonate). Images showed strong topographic contrast and weak chemical contrast for the oxygen 1s maps. Near defects such as steps, there is a higher concentration of oxygen, indicating a higher oxidation rate in this zone. From the O 1s and Pb 4f binding energies, it is concluded that the oxidation products present are Pb3O4, PbCO3 and Pb(OH)2, while PbO, PbSO4 and PbO2 were excluded. Sulfur is present on the oxidised sample in two chemical states: one with the same binding energy as for the clean sample, due to the native PbS below the oxide film; and another of higher binding energy. The binding energy is assigned to S present as polysulfide and/or sulfur located at the oxide/sulfide interface. Spectra taken at different points on the surface show energy shifts up to about 0.5 eV, due to band bending and pinning of the Fermi level by defects or impurities.

Keywords

Binding Energy Scan Tunneling Microscopy Core Level High Binding Energy Adventitious Carbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See for example: “Mineral Surfaces”, ed. D.J. Vaughan and R.A.D. Patrick (Chapman and Hall, 1995).Google Scholar
  2. 2.
    I. Kartio, K. Laajalehto, T. Kaurila, and E. Suoninen, Appl. Surf. Sci. 93 (1996) 167.CrossRefGoogle Scholar
  3. 3.
    R. Szargan, I. Uhlig, G. Wittstock, and P. Rossbach, Int. J. of Mineral Processing 51 (1997) 151.CrossRefGoogle Scholar
  4. 4.
    I. Kartio, K. Laajalehto, and E. Suoninen, Colloids and Surfaces A-Physicochemical and Engineering Aspects 154 (1999) 97.CrossRefGoogle Scholar
  5. 5.
    H.W. Nesbitt, M. Scaini, H. Hochst, G.M. Bancroft, A.G. Schaufuss, and R. Szargan, American Mineralogist 85 (2000) 850.Google Scholar
  6. 6.
    D.S. Zingg and D.M. Hercules, J. Phys. Chem. 82 (1978) 1992.CrossRefGoogle Scholar
  7. 7.
    A.N. Buckley and R. Woods, Appl. Surf. Sci. 17 (1984) 401.CrossRefGoogle Scholar
  8. 8.
    D. Fornasiero, F.S. Li, J. Ralston, and R.S.C. Smart, J. Colloid and Interface Sci. 164 (1994) 333.CrossRefGoogle Scholar
  9. 9.
    K. Laajalehto, P. Nowak, A. Pomianowski, and E. Suoninen, Colloids and Surfaces 57 (1991) 319.CrossRefGoogle Scholar
  10. 10.
    B.S. Kim, R.A. Hayes, C.A. Prestidge, J. Ralston, and R.S. Smart, Appl. Surf. Sci. 78 (1994) 385.CrossRefGoogle Scholar
  11. 11.
    C.M. Eggleston and M.F. Hochella Jr., Science 254 (1991) 983.CrossRefGoogle Scholar
  12. 12.
    K. Laajalehto, R.S. Smart, J. Ralston, and E. Suoninen, Appl. Surf. Sci. 64 (1993) 29.CrossRefGoogle Scholar
  13. 13.
    B. Reuter and R. Stein, Z. Electrochem. 61 (1963) 440.Google Scholar
  14. 14.
    G.W. Poling and J. Leja, J. Phys. Chem. 67 (1963) 2121.CrossRefGoogle Scholar
  15. 15.
    K. Laajalehto, I. Kartio, and E. Suoninen, J. Miner. Process. 51 (1997) 163.CrossRefGoogle Scholar
  16. 16.
    K. Laajalehto, R.St.C. Smart, J. Ralston, and E. Suoninen, Appl. Surf. Sci. 64 (1993) 29.CrossRefGoogle Scholar
  17. 17.
    D. Fornasiero, F. Li, J. Ralston, and R.St.C. Smart, J. Colloid. Interface Sci. 164 (1994) 333.CrossRefGoogle Scholar
  18. 18.
    Y.H. Hsieh and C.P. Huang, J. Colloid. Interace Sci. 131 (1989) 537.CrossRefGoogle Scholar
  19. 19.
    R.S. Smart, M. Jasieniak, K.E. Prince, and W.M. Skinner, Minerals Engineering 13 (2000) 857.CrossRefGoogle Scholar
  20. 20.
    R.St.C. Smart, W.M. Skinner, and A.R. Gerson, Surf. and Interface Analysis 28 (1999) 101.CrossRefGoogle Scholar
  21. 21.
    C.M. Eggleston and M.F. Hochella Jr., American Mineralogist 78 (1993) 877.Google Scholar
  22. 22.
    U. Becker and M.F. Hochella Jr., Geochimica and Cosmochimica Acta 60 (1996) 2413.CrossRefGoogle Scholar
  23. 23.
    M. Marsi, L. Casalis, L. Gregoratti, S. Günther, A. Kolmakov, J. Kovac, D. Lonza, and M. Kiskinova, J. Electron Spectrosc. Relat. Phenom. 84 (1997) 73.CrossRefGoogle Scholar
  24. 24.
    T. Grandke, L. Ley, and M. Cardona, Phys. Rev. B 18 (1978) 3847.CrossRefGoogle Scholar
  25. 25.
    S. Rondon and P.M.A. Sherwood, Surface Science Spectra 5 (1998) 90.CrossRefGoogle Scholar
  26. 26.
    K.S. Kim, T.J. O’Leary, and N. Winograd, Analytical Chemistry 45 (1973) 2214.CrossRefGoogle Scholar
  27. 27.
    P. Nowak, K. Laajalehto, and I. Kartio, Colloids and Surfaces A-Physicochemical and Engineering Aspects 161 (2000) 447.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • K. C. Prince
    • 1
  • S. Heun
    • 1
  • L. Gregoratti
    • 1
  • A. Barinov
    • 1
  • M. Kiskinova
    • 1
  1. 1.Sincrotrone TriesteBasovizzaItaly

Personalised recommendations