• S. Heun
  • G. Salviati
  • Y. Watanabe
  • N. Yamamoto
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 588)


The semiconductor industry has grown rapidly in recent decades. The main reason for such phenomenal market growth are the continued technological breakthroughs in integrated circuits (ICs). The metal-oxide-semiconductor field effect transistor (MOSFET) is by far the most common type of transistor in IC technology [1]. In the 1960s, Gordon Moore observed that the feature size in MOSFETs was decreasing by a factor 2 roughly every 18 month [2]. This empirical trend has continued until today, where structure sizes below 0.35 μm are used [3]. Device miniaturization results in reduced unit cost and in improved performance. This is illustrated with the performance of a typical personal computer over the years. Another benefit of miniaturization is the reduction of power consumption.

However, researchers have projected that below 100 nm in size, the laws of physics will prevent further reduction in the minimum size of today’s MOSFETs, and new device concepts will have to be found which take advantage of the quantum mechanical effects that dominate on such a small scale [3],[4],[5]. A number of nanometer-scale devices have already been realized: Resonant-tunneling devices [6], single-electron transistors [7], and quantum dot arrays [8]. These devices have minimal structure sizes of typically 50 nm [9],[10],[11],[12]. All these designs have in common that the active region of the device is in the surface region of the wafer (top-most μm).


Scanning Tunneling Microscope Quantum Well Lateral Resolution Highly Orient Pyrolytic Graphite Scan Tunneling Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. M. Sze, VLSI Technology (McGraw-Hill, Singapore, 1987).Google Scholar
  2. 2.
    Semiconductor Industry Association, International Technology Roadmap for Semiconductors (International SEMATECH, Aus-tin, 1999).Google Scholar
  3. 3.
    G. Stix, Scientific American, February 1995, p. 72.Google Scholar
  4. 4.
    R. W. Keyes, Physics Today, August 1992, p. 42.Google Scholar
  5. 5.
    M. Schulz, Nature 399, 729 (1999).CrossRefGoogle Scholar
  6. 6.
    A. C. Seabaugh, Y.-C. Kao, W. R. Frensley, J. N. Randall, and M. A. Reed, Appl. Phys. Lett. 59, 3413 (1991).CrossRefGoogle Scholar
  7. 7.
    M. H. Devoret, D. Esteve, and C. Urbina, Nature 360, 547 (1992).CrossRefGoogle Scholar
  8. 8.
    C. Weisbuch and B. Vinter, Quantum Semiconductor Structures (Academic Press, San Diego, 1991).Google Scholar
  9. 9.
    J. H. F. Scott-Thomas, S. B. Field, M. A. Kastner, H. I. Smith, and D. A. Antoniadis, Phys. Rev. Lett. 62, 583 (1989); H. van Houten and C. W. J. Beenakker, Phys. Rev. Lett. 63, 1893 (1989).CrossRefGoogle Scholar
  10. 10.
    Y. Nakajima, Y. Takahashi, S. Horiguchi, K. Iwadate, H. Namatsu, K. Kurihara, and M. Tabe, Appl. Phys. Lett. 65, 2833 (1994).CrossRefGoogle Scholar
  11. 11.
    W. Wegscheider and G. Abstreiter, Phys. Bl. 54, 1115 (1998).Google Scholar
  12. 12.
    S. Y. Chou and Y. Wang, Appl. Phys. Lett. 61, 1591 (1992).CrossRefGoogle Scholar
  13. 13.
    F. Cerrina, in: Handbook of Microlithography, Micromachining, and Microfabrication, Ed. P. Rai-Choudhury (SPIE, Bellingham, 1997).Google Scholar
  14. 14.
    X. Huang, G. Bazán, and G. H. Bernstein, J. Vac. Sci. Technol. B 11, 2565 (1993).CrossRefGoogle Scholar
  15. 15.
    D. M. Eigler and E. K. Schweizer, Nature 344, 524 (1990); S.-W. Hla, this volume.CrossRefGoogle Scholar
  16. 16.
    K. Matsumoto, M. Ishii, K. Segawa, Y. Oka, B. J. Vartanian, and J. S. Harris, Appl. Phys. Lett. 68, 34 (1996).CrossRefGoogle Scholar
  17. 17.
    E. S. Snow and P. M. Campbell, Science 270, 1639 (1995).CrossRefGoogle Scholar
  18. 18.
    S. C. Minne, J. D. Adams, G. Yaralioglu, S. R. Manalis, A. Atalar, and C. F. Quate, Appl. Phys. Lett. 73, 1742 (1998).CrossRefGoogle Scholar
  19. 19.
    Y. Xu, N. C. MacDonald, and S. A. Miller, Appl. Phys. Lett. 67, 2305 (1995).CrossRefGoogle Scholar
  20. 20.
    T. Warwick, H. Ade, A. P. Hitchcock, H. Padmore, E. G. Rightor, and B. P. Tonner, J. Electron Spectrosc. Relat. Phenom. 84, 85 (1997).CrossRefGoogle Scholar
  21. 21.
    M. Henzler and W. Göpel, Oberflächenphysik des Festkörpers (Teubner, Stuttgart, 1991).Google Scholar
  22. 22.
    A. Zangwill, Physics at Surfaces (Cambridge University Press, Cambridge, 1988).Google Scholar
  23. 23.
    B. L. Henke, E. M. Gullikson, and J. C. Davis, Atomic Data and Nuclear Data Tables 54, 181 (1993).CrossRefGoogle Scholar
  24. 24.
    P. Ball, Nature 404, 918 (2000); S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).CrossRefGoogle Scholar
  25. 25.
    H. Ohno, Science 281, 951 (1998); Y. Ohno, D. K. Young, B. Beschoten, F. Matsukara, H. Ohno, and D. D. Awschalom, Nature *402, 790 (1999); T. Dietl, H. Ohno, F. Matsukara, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • S. Heun
    • 1
  • G. Salviati
    • 2
  • Y. Watanabe
    • 3
  • N. Yamamoto
    • 4
  1. 1.Sincrotrone TriesteTriesteItaly
  2. 2.CNR-MASPEC, Parco Area delle Scienze 37aParmaItaly
  3. 3.NTT Basic Research LaboratoriesAtsugiJapan
  4. 4.Department of PhysicsTokyo Institute of TechnologyMeguro-ku TokyoJapan

Personalised recommendations