Skip to main content

Improved Quantum Communication Complexity Bounds for Disjointness and Equality

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2285))

Abstract

We prove new bounds on the quantum communication complexity of the disjointness and equality problems. For the case of exact and non-deterministic protocols we show that these complexities are all equal to n+1, the previous best lower bound being n/2. We show this by improving a general bound for non-deterministic protocols of deWolf.We also give an O(√n·c log*n)-qubit bounded-error protocol for disjointness, modifying and improving the earlier O(√nlogn) protocol of Buhrman, Cleve, and Wigderson, and prove an ω(√n) lower bound for a class of protocols that includes the BCW-protocol as well as our new protocol.

Supported in part by Canada’s NSERC and the Pacific Institute for the Mathematical Sciences.

Supported by Talent grant S 62-565 from the Netherlands Organization for Scientific Research. Work conducted while at CWI, Amsterdam, partially supported by EU fifth framework project QAIP, IST-1999-11234.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Alon and J. H. Spencer. The Probabilistic Method. Wiley-Interscience, 1992.

    Google Scholar 

  2. A. Ambainis, L. Schulman, A. Ta-Shma, U. Vazirani, and A. Wigderson. The quantum communication complexity of sampling. In Proceedings of 39th IEEE FOCS, pages 342–351, 1998.

    Google Scholar 

  3. L. Babai, P. Frankl, and J. Simon. Complexity classes in communication complexity theory. In Proceedings of 27th IEEE FOCS, pages 337–347, 1986.

    Google Scholar 

  4. R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds by polynomials. In Proceedings of 39th IEEE FOCS, pages 352–361, 1998. quant-ph/9802049.

    Google Scholar 

  5. C. Bennett and S. Wiesner. Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states. Physical Review Letters, 69:2881–2884, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  6. G. Brassard. Quantum communication complexity (a survey). quant-ph/0101005, 1 Jan 2001.

    Google Scholar 

  7. G. Brassard, P. Høyer, M. Mosca, and A. Tapp. Quantum amplitude amplification and estimation. quant-ph/0005055. To appear in Quantum Computation and Quantum Information: A Millennium Volume, AMS Contemporary Mathematics Series, 15 May2000.

    Google Scholar 

  8. H. Buhrman. Quantum computing and communication complexity. EATCS Bulletin, pages 131–141, February 2000.

    Google Scholar 

  9. H. Buhrman, R. Cleve, and A. Wigderson. Quantum vs. classical communication and computation. In Proceedings of 30th ACM STOC, pages 63–68, 1998. quantph/ 9802040.

    Google Scholar 

  10. H. Buhrman, W. van Dam, and R. Cleve. Quantum entanglement and communication complexity. SIAM Journal on Computing, 30(6):1829–1841, 2001. quantph/ 9705033.

    Article  MATH  MathSciNet  Google Scholar 

  11. H. Buhrman, W. van Dam, P. Høyer, and A. Tapp. Multiparty quantum communication complexity. Physical Review A, 60(4):2737–2741, 1999. quant-ph/9710054.

    Article  Google Scholar 

  12. H. Buhrman, Ch. Dürr, M. Heiligman, P. Høyer, F. Magniez, M. Santha, and R. de Wolf. Quantum algorithms for element distinctness. In Proceedings of 16th IEEE Conference on Computational Complexity, pages 131–137, 2001. quantph/ 0007016.

    Google Scholar 

  13. H. Buhrman and R. de Wolf. Communication complexity lower bounds by polynomials. In Proceedings of 16th IEEE Conference on Computational Complexity, pages 120–130, 2001. cs.CC/9910010.

    Google Scholar 

  14. R. Cleve and H. Buhrman. Substituting quantum entanglement for communication. Physical Review A, 56(2):1201–1204, 1997. quant-ph/9704026.

    Article  Google Scholar 

  15. R. Cleve, W. van Dam, M. Nielsen, and A. Tapp. Quantum entanglement and the communication complexity of the inner product function. In Proceedings of 1st NASA QCQC conference, volume 1509 of Lecture Notes in Computer Science, pages 61–74. Springer, 1998. quant-ph/9708019.

    Google Scholar 

  16. W. van Dam. Quantum oracle interrogation: Getting all information for almost half the price. In Proceedings of 39th IEEE FOCS, pages 362–367, 1998. quantph/ 9805006.

    Google Scholar 

  17. E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. A limit on the speed of quantum computation in determining parity. Physical Review Letters, 81:5442–5444, 1998. quant-ph/9802045.

    Article  Google Scholar 

  18. L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of 28th ACM STOC, pages 212–219, 1996. quant-ph/9605043.

    Google Scholar 

  19. R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1985.

    Google Scholar 

  20. B. Kalyanasundaram and G. Schnitger. The probabilistic communication complexity of set intersection. SIAM Journal on Computing, 5(4):545–557, 1992.

    MATH  MathSciNet  Google Scholar 

  21. H. Klauck. On quantum and probabilistic communication: Las Vegas and one-way protocols. In Proceedings of 32nd ACM STOC, pages 644–651, 2000.

    Google Scholar 

  22. H. Klauck. Quantum communication complexity. In Proceedings of Workshop on Boolean Functions and Applications at 27th ICALP, pages 241–252, 2000. quantph/ 0005032.

    Google Scholar 

  23. H. Klauck. Lower bounds for quantum communication complexity. In Proceedings of 42nd IEEE FOCS, pages 288–297, 2001. quant-ph/0106160.

    Google Scholar 

  24. H. Klauck, A. Nayak, A. Ta-Shma, and D. Zuckerman. Interaction in quantum communication and the complexity of set disjointness. In Proceedings of 33rd ACM STOC, pages 124–133, 2001.

    Google Scholar 

  25. I. Kremer. Quantum communication. Master’s thesis, Hebrew University, Computer Science Department, 1995.

    Google Scholar 

  26. E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, 1997.

    Google Scholar 

  27. S. Massar, D. Bacon, N. Cerf, and R. Cleve. Classical simulation of quantum entanglement without local hidden variables. Physical Review A, 63(5):052305, 2001. quant-ph/0009088.

    Article  Google Scholar 

  28. M. A. Nielsen. Quantum Information Theory. PhD thesis, University of New Mexico, Albuquerque, 1998. quant-ph/0011036.

    Google Scholar 

  29. M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000.

    Google Scholar 

  30. R. Raz. Exponential separation of quantum and classical communication complexity. In Proceedings of 31st ACM STOC, pages 358–367, 1999.

    Google Scholar 

  31. A. Razborov. On the distributional complexity of disjointness. Theoretical Computer Science, 106(2):385–390, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  32. P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509, 1997. quant-ph/9508027.

    Article  MATH  MathSciNet  Google Scholar 

  33. A. Ta-Shma. Classical versus quantum communication complexity. ACM SIGACT News (Complexity Column 23), pages 25–34, 1999.

    Google Scholar 

  34. R. de Wolf. Characterization of non-deterministic quantum query and quantum communication complexity. In Proceedings of 15th IEEE Conference on Computational Complexity, pages 271–278, 2000. cs.CC/0001014.

    Google Scholar 

  35. A. C.-C. Yao. Some complexity questions related to distributive computing. In Proceedings of 11th ACM STOC, pages 209–213, 1979.

    Google Scholar 

  36. A. C.-C. Yao. Quantum circuit complexity. In Proceedings of 34th IEEE FOCS, pages 352–360, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Høyer, P., de Wolf, R. (2002). Improved Quantum Communication Complexity Bounds for Disjointness and Equality. In: Alt, H., Ferreira, A. (eds) STACS 2002. STACS 2002. Lecture Notes in Computer Science, vol 2285. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45841-7_24

Download citation

  • DOI: https://doi.org/10.1007/3-540-45841-7_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43283-8

  • Online ISBN: 978-3-540-45841-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics