Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 605))

Abstract

We identify the origin, and elucidate the character of the extended time-scales that plague computer simulation studies of first and second order phase transitions. A brief survey is provided of a number of new and existing techniques that attempt to circumvent these problems. Attention is then focused on two novel methods with which we have particular experience: “Wang-Landau sampling” and Phase Switch Monte Carlo. Detailed case studies are made of the application of the Wang-Landau approach to calculate the density of states of the 2D Ising model and the Edwards-Anderson spin glass. The principles and operation of Phase Switch Monte Carlo are described and its utility in tackling ‘difficult’ first order phase transitions is illustrated via a case study of hard-sphere freezing. We conclude with a brief overview of promising new methods for the improvement of deterministic, spin dynamics simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. P. Landau and K. Binder, A Guide to Monte Carlo Methods in Statistical Physics, (Cambridge U. Press, Cambridge, 2000).

    Google Scholar 

  2. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. M. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).

    Article  ADS  Google Scholar 

  3. S. Wansleben and D. P. Landau, Phys. Rev. B 43, 6006 (1991).

    Article  ADS  Google Scholar 

  4. R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58, 86 (1987).

    Article  ADS  Google Scholar 

  5. P. W. Kasteleyn and C. Fortuin, J. Phys. Soc. Japan Suppl. 26s, 11 (1969); C. Fortuin and P. W. Kasteleyn, Physica 57, 536 (1972).

    ADS  Google Scholar 

  6. J.-S. Wang, Physica A 164, 240 (1990).

    Article  ADS  Google Scholar 

  7. U. Wolff, Phys. Rev. Lett. 62, 361 (1989).

    Article  ADS  Google Scholar 

  8. A. B. Bortz, M. H. Kalos and J. L. Lebowitz, J. Comput. Phys. 17, 10 (1975).

    Article  ADS  Google Scholar 

  9. M. A. Novotny, Phys. Rev. Lett. 74, 1 (1995); M. A. Novotny, Computers in Physics 9, 46 (1995)

    Article  ADS  Google Scholar 

  10. F. Wang and D.P. Landau, Phys. Rev. Lett. 86, 2050 (2001); F. Wang and D. P. Landau, Phys. Rev. E 64, 056101-1 (2001).

    Article  ADS  Google Scholar 

  11. D. P. Landau, Phys Rev. B 13, 2997 (1976).

    Article  ADS  Google Scholar 

  12. J.-S. Wang, T. K. Tay and R. H. Swendsen, Phys. Rev. Lett. 82, 476 (1999).

    Article  ADS  Google Scholar 

  13. P. D. Beale, Phys. Rev. Lett. 76, 78 (1996).

    Article  ADS  Google Scholar 

  14. A. E. Ferdinand and M. E. Fisher, Phys. Rev. 185, 832 (1969).

    Article  ADS  Google Scholar 

  15. A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 61, 2635–2638 (1988); ibid. 63, 1195–1198 (1989).

    Article  ADS  Google Scholar 

  16. M. Plischke and B. Bergersen, Equilibrium Statistical Physics, (World Scientific, Singapore, 1994).

    MATH  Google Scholar 

  17. A.Z. Panagiotopoulos, Mol. Phys. 61, 813 (1987).

    Article  ADS  Google Scholar 

  18. A.Z. Panagiotopoulos, J. Phys. Condens. Matter 12 R25 (2000)

    Article  ADS  Google Scholar 

  19. B. A. Berg and T. Neuhaus, Phys. Rev. Lett. 68, 9 (1992), Phys. Lett. B 267, 249 (1991), J. Lee, Phys. Rev. Lett. 71, 211 (1993). B. A. Berg J. Stat. Phys. 82, 323 (1996), B. A. Berg, Nucl. Phys. B 63, 982 (1998).

    Article  ADS  Google Scholar 

  20. D. Frenkeland B. Smit, Understanding Molecular Simulation (Academic, New York, 1996).

    Google Scholar 

  21. N.B. Wilding. Phys. Rev. E 52, 602 (1995).

    Article  ADS  Google Scholar 

  22. N.B. Wilding, Am. J. Phys. 69, 1147 (2001).

    Article  ADS  Google Scholar 

  23. B.A. Berg, cond-mat/0110521.

    Google Scholar 

  24. W.G. Hoover and F.H. Ree, J. Chem. Phys, 49, 3609 (1968).

    Article  ADS  Google Scholar 

  25. A.D. Bruce, N.B. Wilding and G.J. Ackland, Phys. Rev. Lett. 79, 3002 (1997); A.D. Bruce, A.N. Jackson, G.J. Ackland and N.B. Wilding, Phys. Rev. E 61, 906 (2000).

    Article  ADS  Google Scholar 

  26. N.B Wilding and A.D. Bruce, Phys. Rev. Lett. 85, 5138 (2000).

    Article  ADS  Google Scholar 

  27. p, V and E are measured in units of kBT/D3 and D3 and kBT respectively, where D is the hard sphere diameter.

    Google Scholar 

  28. G.R. Smith and A.D. Bruce, Phys. Rev. E 53, 6530 (1996).

    Article  ADS  Google Scholar 

  29. R.J. Speedy, J. Phys: Condens. Matter, 9, 8591 (1997).

    Article  ADS  Google Scholar 

  30. M.S.S. Challa, D.P. Landau and K. Binder Phys. Rev. B 34, 1841 (1986).

    Article  ADS  Google Scholar 

  31. W. Janke and S. Kappler, Phys. Rev. Lett. 74, 212 (1995).

    Article  ADS  Google Scholar 

  32. K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 (1986).

    Article  ADS  Google Scholar 

  33. S.F. Edwards and P.W. Anderson, J Phys. F. Metal Phys. 5 965 (1975).

    Article  ADS  Google Scholar 

  34. A. R. Lima, P. M. C. de Oliveira and T. J. P. Penna, J. Stat. Phys. 99, 691 (2000).

    Article  MATH  Google Scholar 

  35. R.N. Bhatt and A.P. Young, Phys. Rev. Lett. 54 924 (1985).

    Article  ADS  Google Scholar 

  36. N. Kawashima and A.P. Young, Phys. Rev. B 53 R484 (1996).

    Article  ADS  Google Scholar 

  37. M. Palassini and A. P. Young, Phys. Rev. Lett. 82 5128 (1999).

    Article  ADS  Google Scholar 

  38. M. Palassini and A. P. Young, Phys. Rev. Lett. 83 5126 (1999).

    Article  ADS  Google Scholar 

  39. M. Palassini and A. P. Young, Phys. Rev. Lett. 85 3017 (2000).

    Article  ADS  Google Scholar 

  40. E. Marinari, Phys. Rev. Lett. 82 434 (1999).

    Article  ADS  Google Scholar 

  41. M. A. Moore, H. Bokiland B. Drossel, Phys. Rev. Lett. 81 4252 (1999).

    Article  ADS  Google Scholar 

  42. J. Houdayer and O. C. Martin, Phys. Rev. Lett. 82 4934 (1999).

    Article  ADS  Google Scholar 

  43. I. Morgenstern and K. Binder, Phys. Rev. B22, 288 (1980).

    ADS  Google Scholar 

  44. K. Binder in Fundamental Problems in Statistical Mechanics V, edited by E. G. D. Cohen, (North-Holland, 1980).

    Google Scholar 

  45. E. Marinari, G. Parisi and F. Ritort, J. Phys. A 27 2687 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  46. E. Marinari and G. Parisi, Europhys. Lett. 19, 451 (1992).

    Article  ADS  Google Scholar 

  47. K. Hukushima and K. Nemoto, J. Phys. Soc. Japan 65, 1604 (1996).

    Article  ADS  Google Scholar 

  48. K. Hukushima, in Computer Simulation Studies in Condensed Matter Physics XIII, eds. D. P. Landau, S. P. Lewis and H.-B. Schüttler (Springer, Berlin, Heidelberg, 2000).

    Google Scholar 

  49. D. P. Landau and M. Krech, J. Phys.: Condens. Matter 11, R179 (1999).

    Article  ADS  Google Scholar 

  50. M. Krech, A. Bunker, and D. P. Landau, Comp. Phys. Commun. 111, 1 (1999).

    Article  ADS  Google Scholar 

  51. M. Suzuki and K. Umeno in: Computer Simulation Studies in Condensed Matter Physics VI, eds. D. P. Landau, K. K. Mon, and H.-B. Schüttler (Springer, Berlin, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wilding, N., Landau, D.P. (2002). Monte Carlo Methods for Bridging the Timescale Gap. In: Nielaba, P., Mareschal, M., Ciccotti, G. (eds) Bridging Time Scales: Molecular Simulations for the Next Decade. Lecture Notes in Physics, vol 605. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45837-9_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-45837-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44317-9

  • Online ISBN: 978-3-540-45837-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics