Skip to main content

Bridging the Time Scale Gap: How Does Foldable Polymer Navigate Its Conformation Space?

  • Chapter
Bridging Time Scales: Molecular Simulations for the Next Decade

Part of the book series: Lecture Notes in Physics ((LNP,volume 605))

Abstract

We analyze the physical ideas used to analyze the computational Monte Carlo experiments on dynamics of protein folding and dynamics of other complex systems. We show that the concept of reaction coordinate can be formulated in a systematic way using the concept of commitor. This quantity can be usefully described by associating certain system of resistors with the space of conformations of the protein, in which case the flow of current and the distribution of potentials, governed by the Kirchoff rules, give full description of the topology of folding pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Protein Folding, Evolution, and Design, Course CXLV, International School. of Physics “Enrico Fermi”, Italy, July 11–21, 2000, ed. by R. Broglia, E. Shakhnovich, and G. Tiana (Italian Physical Society, Bologna, 2001)

    Google Scholar 

  2. P. Bolhuis, C. Dellago, P. Geissler, D. Chandler: J. Phys.-Condensed Matter 12, A147–A152 (2000)

    Article  ADS  Google Scholar 

  3. H. Frauenfelder, R. Austin, P. Wolynes: Rev. Mod. Phys. 71, 419–430 (1999)

    Article  Google Scholar 

  4. P. H. Verdier, W. H. Stockmmayer: J. Chem. Phys., 36, 227 (1962)

    Article  ADS  Google Scholar 

  5. J.D. Bryngelson, J.N. Onuchic, N.D. Socci, P.G. Wolynes: Proteins, 21, 167–195 (1995)

    Article  Google Scholar 

  6. M. R. Betancourt, J.N. Onuchic: J. Chem. Phys., 103, 773–787 (1995)

    Article  ADS  Google Scholar 

  7. R. Du, A. Grosberg, T. Tanaka: Phys. Rev. Letters 84, 1828–1831 (2000)

    Article  ADS  Google Scholar 

  8. A. Scala, L. A. Nunes Amaral, M Barthèlèmy: Europhys. Lett., 55, 594–600 (2001)

    Article  ADS  Google Scholar 

  9. R. Du, A. Grosberg, T. Tanaka, M. Rubinstein: Phys. Rev. Letters 84, 2417–2420 (2000)

    Article  ADS  Google Scholar 

  10. E. Shnol, preprint, Pouschino (1980)

    Google Scholar 

  11. V. Pande, A. Grosberg, T. Tanaka, D. Rokhsar: Current Opinion in Structural Biology 8, 68–79 (1998)

    Article  Google Scholar 

  12. P. Hanggi, P. Talkner, M. Borkovec: Rev. Mod. Phys. 62, 251 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  13. E. Lifshitz, L. Pitaevskii: Physical Kinetics, reprint edition (Butterworth-Heinemann, 1981)

    Google Scholar 

  14. S. Auer, D. Frenkel: Nature 409, 1020–1023 (2001) sphere colloids

    Article  ADS  Google Scholar 

  15. R. Du, V. Pande, A. Grosberg, T. Tanaka, E. Shakhnovich: J. Chem. Phys. 108, 334–350 (1998)

    Article  ADS  Google Scholar 

  16. P. Eastman, N. Grönbech-Jensen, S. Doniach: J. Chem. Phys. 114, 3823 (2001) by reaction path annealing

    Article  ADS  Google Scholar 

  17. N. Metropolis, et al: J. Chem. Phys. 21 1087 (1953)

    Article  ADS  Google Scholar 

  18. W. Feller: An introduction to probability theory and its applications, 2nd edn. (J. Wiley & Sons, New York 1971)

    MATH  Google Scholar 

  19. S. Redner: A guide to first passage processes (Cambridge Univ. Press, 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grosberg, A. (2002). Bridging the Time Scale Gap: How Does Foldable Polymer Navigate Its Conformation Space?. In: Nielaba, P., Mareschal, M., Ciccotti, G. (eds) Bridging Time Scales: Molecular Simulations for the Next Decade. Lecture Notes in Physics, vol 605. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45837-9_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-45837-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44317-9

  • Online ISBN: 978-3-540-45837-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics