Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 605))

Abstract

Experimental work on complex condensed matter can address a broad range of temporal and spatial scales, from femtosecond dynamics and atomistic detail to real-time macroscopic phenomena. Simulation methods in which each atom is explicitly represented are well established but have difficulty addressing many cooperative effects of experimental and theoretical interest. There is simply too large a gap between the time and spatial scales that govern typical intramolecular events and those which are relevant for collective motions. One example is the spatial rearrangement of membrane species such as occur in the formation of a lipid raft [1] or membrane fusion. Available simulation techniques for specific time and spatial scales are illustrated schematically in Fig. 2.1. These techniques take a variety of approaches to reduce the level of detail in the representation of the system under study as the time and/or length scales grow. This will be discussed further in Sect. 2.3. Bridging these disparate scales is possible with multiscale modeling [2,3,4] in which the various levels of treatment are coupled and fed back into one another.

Address reprint requests to Michael Klein

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Pralle, P. Keller, E.-L. Florin, K. Simons, and J. K. H. Hörber, J. Cell Biol. 148, 997 (2000).

    Article  Google Scholar 

  2. H. Rafii-Tabar and A. Chirazi, Phys. Rep. 365, 145 (2002).

    Article  MATH  ADS  Google Scholar 

  3. W. A. Goddard III, T. Cagin, M. Blanco, N. Vaidehi, S. Dasgupta, W. Floriano, M. Belmares, J. Kua, G. Zamanakos, S. Kashihara, M. Iotov, and G. Gao, Comp. Theor. Poly. Sci. 11, 329 (2001).

    Article  Google Scholar 

  4. T. Cagin, G. Wang, R. Martin, G. Zamanakos, N. Vaidehi, D. T. Mainz, and W. A. Goddard III, Comp. Theor. Poly. Sci. 11, 345 (2001).

    Article  Google Scholar 

  5. K. Svoboda and S.M. Block, Ann. Rev. Biophys. Biomol. Struct. 23 247 (1994).

    Article  Google Scholar 

  6. S. A. Safran, Statistical Thermodynamics of Surfaces, Interfaces, and Membranes, Addison-Wesley, New York, 1994.

    Google Scholar 

  7. J. Israelachvili and H. Wennerström, J. Phys. Chem. 96, 520 (1992).

    Article  Google Scholar 

  8. D. Marsh, Biochim. Biophys. Acta 1286, 183 (1996).

    Google Scholar 

  9. J.-G. Hu and R. Granek, J. Phys. II (France) 6, 999 (1996).

    Article  Google Scholar 

  10. J. Y. Walz and E. Ruckenstein, J. Phys. Chem. B 103, 7461 (1999).

    Article  Google Scholar 

  11. P. Sens and S. A. Safran, Eur. Phys. J. E 1, 237 (2000).

    Article  Google Scholar 

  12. D. R. Fattal and A. Ben-Shaul, Biophys. J. 65, 1795 (1993).

    Article  ADS  Google Scholar 

  13. S. May and A. Ben-Shaul, Biophys. J. 76, 751 (1999).

    Article  ADS  Google Scholar 

  14. S. T. Milner, J.-F. Joanny, and P. Pincus, Europhys. Lett. 9, 495 (1989).

    Article  ADS  Google Scholar 

  15. D. Duque, X. Li, K. Katsov, and M. Schick, J. Chem. Phys. 116, 10478 (2002).

    Article  ADS  Google Scholar 

  16. C. Nielsen, M. Goulian, and O. S. Andersen, Biophys. J. 74, 1966 (1998).

    Article  ADS  Google Scholar 

  17. T. A. Harroun, W. T. Heller, T. M. Weiss, L. Yang, and H. W. Huang, Biophys. J. 76, 3176 (1999).

    Article  Google Scholar 

  18. H. Sprong, P. van der Sluijs, and G. van Meer, Nature Rev. Mol. Cell Biol. 2, 504 (2001).

    Article  Google Scholar 

  19. M. Caffrey, Curr. Opin. Struct. Biol. 10, 486 (2000).

    Article  Google Scholar 

  20. M. F. Brown, R. L. Thurmond, S. W. Dodd, D. Otten, and K. Beyer, Phys. Rev. E. 64, 010901 (2001).

    Article  ADS  Google Scholar 

  21. T. J. McIntosh, Curr. Opin. Struct. Biol. 10, 481 (2000).

    Article  Google Scholar 

  22. Y. F. Dufrêne, T. Boland, J. W. Schneider, W. R. Barger, and G. U. Lee, Faraday Discuss. 111, 79 (1998).

    Article  ADS  Google Scholar 

  23. J. K. Basu and M. K. Sanyal, Phys. Rep. 363, 1 (2002).

    Article  ADS  Google Scholar 

  24. P. Dynarowicz-OŁatka, A. Dhanabalan, and O. N. Oliveira Jr., Adv. Coll. Interf. Sci., 91, 221 (2001).

    Article  Google Scholar 

  25. R. Goetz, G. Gommpper, and R. Lipowsky, Phys. Rev. Lett. 82, 221 (1999).

    Article  ADS  Google Scholar 

  26. S. J. Marrink and A. E. Mark, J. Phys. Chem. B 105, 6122 (2001).

    Article  Google Scholar 

  27. E. Lindahl and O. Edholm, Biophys. J. 79, 426 (2000).

    Article  ADS  Google Scholar 

  28. J. E. Johnson and W. Chiu, Curr. Opinion Struct. Biol. 10, 229 (2000).

    Article  Google Scholar 

  29. J. Witz and F. Brown, Arch. Virol. 146, 2263 (2001).

    Article  Google Scholar 

  30. U. Rothlisberger, P. Carloni, K. Doclo, and M. Parrinello, J. Biol. Inorg. Chem. 5, 236 (2000).

    Article  Google Scholar 

  31. See the article by R. Kapral and G. Ciccotti in this volume.

    Google Scholar 

  32. G. R. Smith and M. S. P. Sansom, Biophys. J. 73, 1364 (1997).

    Article  ADS  Google Scholar 

  33. Q. Zhong, D. M. Newns, P. Pattnaik, J. D. Lear, and M. L. Klein, FEBS Letters 473, 195 (2000).

    Article  Google Scholar 

  34. J. C. Shelley and M. Y. Shelley, Curr. Opin. Coll. Interf. Sci. 5, 101 (2000).

    Article  Google Scholar 

  35. Numerical Recipes in Fortran 77: The Art of Scientific Computing, 2nd edition. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Cambridge University Press, New York, 1992.

    Google Scholar 

  36. J. A. Izaguirre, D. P. Catarello, J. M. Wozniak, and R. D. Skeel, J. Chem. Phys. 114, 2090 (2001).

    Article  ADS  Google Scholar 

  37. A. J. Chorin, O. H. Hald, and R. Kupferman, Proc. Natl. Acad. Sci. USA 97, 2968 (2000).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. H. Noguchi and M. Takasu, Phys. Rev. E 64 041913 (2001).

    Article  ADS  Google Scholar 

  39. S.-H. Chung, T. W. Allen, and S. Kuyucak, Biophys. J. 83, 263 (2002).

    Article  ADS  Google Scholar 

  40. P. R. ten Wolde and D. Chandler, Proc. Natl. Acad. Sci. USA 99, 6539 (2002).

    Article  ADS  Google Scholar 

  41. A. Malevanets and R. Kapral, J. Chem. Phys. 112, 7260 (2000).

    Article  ADS  Google Scholar 

  42. L. David, R. Luo, and M. K. Gilson, J. Comp. Chem. 21, 295 (2000).

    Article  Google Scholar 

  43. E. G. Flekkøy and P. V. Coveney, Phys. Rev. Lett. 83, 1775 (1999).

    Article  ADS  Google Scholar 

  44. R. D. Groot and K. L. Rabone, Biophys. J. 81, 725 (2001).

    Article  ADS  Google Scholar 

  45. A. Liwo, S. Ołdziej, M. R. Pincus, R. J. Wawak, S. Rackovsky, and H. A. Scheraga, J. Comp. Chem. 18, 849 (1997).

    Article  Google Scholar 

  46. A. Kolinski and J. Skolnick, J. Chem. Phys. 97, 9412 (1992).

    Article  ADS  Google Scholar 

  47. J. I. Siepmann, Adv. Chem. Phys. 105, 443 (1999).

    Article  Google Scholar 

  48. S.G. Whittington, Fields Inst. Comm. 26, 131 (2000).

    MathSciNet  Google Scholar 

  49. S. B. Opps and J. Schofield, Phys. Rev. E 63, 056701 (2001).

    Article  ADS  Google Scholar 

  50. H. Fukunaga, J. Takimoto, and M. Doi, J. Chem. Phys. 116, 8183 (2002).

    Article  ADS  Google Scholar 

  51. L. Whitehead, C. M. Edge, and J. W. Essex, J. Comp. Chem. 22, 1622 (2001).

    Article  Google Scholar 

  52. A. P. Lyubartsev and A. Laaksonen, Phys. Rev. E 52, 3730 (1995).

    Article  ADS  Google Scholar 

  53. R. L. McGreevy and L. Pusztai, Mol. Sim. 1, 359 (1988).

    Article  Google Scholar 

  54. C. F. Lopez, P. B. Moore, and M. L. Klein, manuscript in preparation.

    Google Scholar 

  55. G. L. Richmond, Annu. Rev. Phys. Chem. 52, 357 (2001).

    Article  ADS  Google Scholar 

  56. R. Faller, H. Schmitz, O. Biermann, and F. Müller-Plathe, J. Comp. Chem. 20, 1009 (1999).

    Article  Google Scholar 

  57. J. C. Shelley, M. Y. Shelley, R. C. Reeder, S. Bandyopadhyay, and M. L. Klein, J. Phys. Chem. B 105, 4464 (2001).

    Article  Google Scholar 

  58. S. Bandyopadhyay, J. C. Shelley, and M. L. Klein, J. Phys. Chem. B 105, 5979 (2001).

    Article  Google Scholar 

  59. J. C. Shelley, Modified coarse grain parameters for MD simulations in the NPT ensemble. Available through the web at http://www.cmm.upenn.edu.

  60. P. E. Harper, D. A. Mannock, R. N. A. H. Lewis, R. N. McElhaney, and S. M. Gruner, Biophys. J. 81, 2693 (2001).

    Article  Google Scholar 

  61. J. C. Shelley, M. Y. Shelley, R. C. Reeder, S. Bandyopadhyay, P. B. Moore, and M. L. Klein, J. Phys. Chem. B 105, 9785 (2001).

    Article  Google Scholar 

  62. C. F. Lopez, P. B. Moore, J. C. Shelley, M. Y. Shelley, and M. L. Klein, Comp. Phys. Comm. [in press]

    Google Scholar 

  63. C. F. Lopez, S. O. Nielsen, P. B. Moore, J. C. Shelley, and M. L. Klein, J. Phys.: Condens. Matter [submitted].

    Google Scholar 

  64. P. Linse and V. Lobaskin, J. Chem. Phys. 112, 3917 (2000).

    Article  ADS  Google Scholar 

  65. R. Hirn, T. M. Bayerl, J. O. Rädler, and E. Sackmann, Faraday Discuss. 111, 17 (1998).

    Article  ADS  Google Scholar 

  66. S. O. Nielsen, C. F. Lopez, P. B. Moore, J. C. Shelley, and M. L. Klein, manuscript in preparation.

    Google Scholar 

  67. S. E. Feller, Y. Zhang, and R. W. Pastor, J. Chem. Phys. 103, 10267 (1995).

    Article  ADS  Google Scholar 

  68. M. M. Rudek, J. A. Fisk, V. M. Chakarov, and J. L. Katz, J. Chem. Phys. 105, 4707 (1996).

    Article  ADS  Google Scholar 

  69. J. Alejandre, D. J. Tildesley, and G. A. Chapela, J. Chem. Phys. 102, 4574 (1995).

    Article  ADS  Google Scholar 

  70. B. Chen, J. I. Siepmann, K. J. Oh, and M. L. Klein, J. Chem. Phys. 116, 4317 (2002).

    Article  ADS  Google Scholar 

  71. R. Goetz and R. Lipowsky, J. Chem. Phys. 108, 7397 (1998).

    Article  ADS  Google Scholar 

  72. J.-M. Drouffe, A. C. Maggs, and S. Leibler, Science 254, 1353 (1991).

    Article  ADS  Google Scholar 

  73. S. Karaborni, K. Esselink, P. A. J. Hilbers, B. Smit, J. Karthäuser, N. M. van Os, and R. Zana, Science 266, 254 (1994).

    Article  ADS  Google Scholar 

  74. B. Smit, K. Esselink, P. A. J. Hilbers, N. M. van Os, L. A. M. Rupert, and I. Szleifer, Langmuir 9, 9 (1993).

    Article  Google Scholar 

  75. S. Yamamoto, Y. Maruyama, and S. Hyodo, J. Chem. Phys. 116, 5842 (2002).

    Article  ADS  Google Scholar 

  76. F. K. von Gottberg, K. A. Smith, and T. A. Hatton, J. Chem. Phys. 106, 9850 (1997).

    Article  ADS  Google Scholar 

  77. F. K. von Gottberg, K. A. Smith, and T. A. Hatton, J. Chem. Phys. 108, 2232 (1998).

    Article  ADS  Google Scholar 

  78. S. J. Marrink, D. P. Tieleman, and A. E. Mark, J. Phys. Chem. B 104, 12165 (2000).

    Article  Google Scholar 

  79. S. Bogusz, R. M. Venable, and R. W. Pastor, J. Phys. Chem. B 105, 8312 (2001).

    Article  Google Scholar 

  80. M. Sjölund, L. Rilfors, and G. Lindbolm, Biochemistry 28, 1323 (1989).

    Article  Google Scholar 

  81. F. Dumas, M. C. Lebrun, and J.-F. Tocanne, FEBS Letters 458, 271 (1999).

    Article  Google Scholar 

  82. M. R. R. de Planque, E. Goormaghtigh, D. V. Greathouse, R. E. Koeppe II, J. A. W. Kruijtzer, R. M. J. Liskamp, B. de Kruijff, and J. A. Killian, Biochem. 40, 5000 (2001).

    Article  Google Scholar 

  83. T. A. Harroun, W. T. Heller, T. M. Weiss, L. Yang, and H. W. Huang, Biophys. J. 76, 937 (1999).

    Article  Google Scholar 

  84. T. Gill, J. H. Ipsen, O. G. Mouritsen, M. C. Sabra, M. M. Sperotto, and M. J. Zuckermann, Biochim. Biophys. Acta 1376, 245 (1998).

    Google Scholar 

  85. M. Wahab, H.-J. Mögel, and P. Schiller, Mol. Phys. 99, 2045 (2001).

    Article  ADS  Google Scholar 

  86. N. Dan, P. Pincus, and S. A. Safran, Langmuir 9, 2768 (1993).

    Article  Google Scholar 

  87. P. A. Kralchevsky and K. Nagayama, Adv. Colloid. Interf. Sci. 85, 145 (2000).

    Article  Google Scholar 

  88. P. Lagüe, M. J. Zuckermann, and B. Roux, Faraday Discuss. 111, 165 (1998).

    Article  ADS  Google Scholar 

  89. P. Lagüe, M. J. Zuckermann, and B. Roux, Biophys. J. 81, 276 (2001).

    Article  Google Scholar 

  90. S. Sharpe, K. R. Barber, C. W. M. Grant, D. Goodyear, and M. R. Morrow, Biophys. J. 83, 345 (2002).

    Article  ADS  Google Scholar 

  91. N. J. P. Ryba and D. Marsh, Biochem. 31,7511 (1992).

    Article  Google Scholar 

  92. T. R. Weikl, Europhys. Lett. 54, 547 (2001).

    Article  ADS  Google Scholar 

  93. F. Dumas, M. M. Sperotto, M.-C. Lebrun, J.-F. Tocanne, and O. G. Mouritsen, Biophys. J. 73, 1940 (1997).

    Article  Google Scholar 

  94. C. Gliss, H. Clausen-Schaumann, R. Günther, S. Odenbach, O. Randl, and T. M. Bayerl, Biophys. J. 74, 2443 (1998).

    Article  ADS  Google Scholar 

  95. S. O. Nielsen, C. F. Lopez, I. Ivanov, P. B. Moore, J. C. Shelley, and M. L. Klein, manuscript in preparation.

    Google Scholar 

  96. J. A. Killian, I. Salemink, M. R. R. de Planque, G. Lindblom, R. E. Koeppe II, and D. V. Greathouse, Biochem. 35 1037 (1996).

    Article  Google Scholar 

  97. H. I. Petrache, D. M. Zuckerman, J. N. Sachs, J. A. Killian, R. E. Koeppe II, and T. B. Woolf, Langmuir 18, 1340 (2002).

    Article  Google Scholar 

  98. R. Maget-Dana, Biochim. Biophys. Acta 1462, 109 (1999).

    Article  Google Scholar 

  99. A. Tronin, J. Strzalka, X. Chen, P. L. Dutton, B. M. Ocko, and J. K. Blasie, Langmuir 17, 3061 (2001).

    Article  Google Scholar 

  100. J. M. Crane and S. B. Hall, Biophys. J. 80, 1863 (2001).

    Article  ADS  Google Scholar 

  101. N. Wüstneck, R Wüstneck, V. B. Fainerman, R. Miller, and U. Pison, Colloids and Surfaces B: Biointerfaces 21, 191 (2001).

    Article  Google Scholar 

  102. E. J. A. Veldhuizen and H. P. Haagsman, Biochim. Biophys. Acta 1467 255 (2000).

    Article  Google Scholar 

  103. M. M. Lipp, K. Y. C. Lee, D. Y. Takamoto, J. A. Zasadzinski, and A. J. Waring, Phys. Rev. Lett. 81, 1650 (1998).

    Article  ADS  Google Scholar 

  104. Y. N. Kaznessis, S. Kim, and R. G. Larson, Biophys. J. 82, 1731 (2002).

    Article  Google Scholar 

  105. P. J. Somerharju, J. A. Virtanen, K. K. Eklund, P. Vainio, and P. K. J. Kinnunen, Biochem. 24, 2773 (1985).

    Article  Google Scholar 

  106. S. O. Nielsen, unpublished data.

    Google Scholar 

  107. R. A. Ridsdale, N. Palaniyar, F. Possmayer, and G. Harauz, J. Membrane Biol. 180, 21 (2001).

    Article  Google Scholar 

  108. W. R. Schief, L. Touryan, S. B. Hall, and V. Vogel, J. Phys. Chem. B 104, 7388 (2000).

    Article  Google Scholar 

  109. C. Ybert, W. Lu, G. Möller, and C. M. Knobler, J. Phys. Chem. B 106 2004 (2002).

    Article  Google Scholar 

  110. C. Ybert, W. Lu, G. Möller, and C. M. Knobler, J. Phys.: Condens. Matter 14, 4753 (2002).

    Article  ADS  Google Scholar 

  111. F. Schmid, C. Stadler, and H. Lange, Colloids Surf. A 149, 301 (1999).

    Article  Google Scholar 

  112. A. Gopal and K. Y. C. Lee, J. Phys. Chem. B, 105, 10348 (2001).

    Article  Google Scholar 

  113. L. Yang, Y. A. Harroun, T. M. Weiss, L. Ding, and H. W. Huang, Biophys. J. 81, 1475 (2001).

    Article  Google Scholar 

  114. J. D. Hartgerink, T. D. Clark, and M. R. Ghadiri, Chem. Eur. J. 4, 1367 (1998).

    Article  Google Scholar 

  115. S. Fernandez-Lopez, H.-S. Kim, E. C. Choi, M. Delgado, J. R. Granja, A. Khasanov, K. Kraehenbuehl, G. Long, D. A. Weinberger, K. M. Wilcoxen, and M. R. Ghadiri, Nature 412, 452 (2001).

    Article  ADS  Google Scholar 

  116. S. Bandyopadhyay, J. C. Shelley, M. Tarek, P. B. Moore, and M. L. Klein, J. Phys. Chem. B 102, 6318 (1998).

    Article  Google Scholar 

  117. L. M. Grant, F. Tiberg, and W. A. Ducker, J. Phys. Chem. B 102, 4288 (1998).

    Article  Google Scholar 

  118. B. M. Discher, Y.-Y. Won, D. S. Ege, J. C.-M. Lee, F. S. Bates, D. E. Discher, and D. A. Hammer, Science 284, 1143 (1999).

    Article  ADS  Google Scholar 

  119. S. Vauthey, S. Santoso, H. Gong, N. Watson, and S. Zhang, Proc. Natl. Acad. Sci. USA 99, 5355 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nielsen, S.O., Klein, M.L. (2002). A Coarse Grain Model for Lipid Monolayer and Bilayer Studies. In: Nielaba, P., Mareschal, M., Ciccotti, G. (eds) Bridging Time Scales: Molecular Simulations for the Next Decade. Lecture Notes in Physics, vol 605. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45837-9_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-45837-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44317-9

  • Online ISBN: 978-3-540-45837-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics