Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 605))

Abstract

Quantum Monte Carlo (QMC) methods such as Variational Monte Carlo, Diffusion Monte Carlo or Path Integral Monte Carlo are the most accurate and general methods for computing total electronic energies. We will review methods we have developed to perform QMC for the electrons coupled to another MC simulation for the ions. In this method, one estimates the Born-Oppenheimer energy E(Z) where Z represents the ionic degrees of freedom. That estimate of the energy is used in a Metropolis simulation of the ionic degrees of freedom. Important aspects of this method are how to deal with the noise, which QMC method and which trial function to use, how to deal with generalized boundary conditions on the wave function so as to reduce the finite size effects. We discuss some advantages of the CEIMC method concerning how the quantum effects of the ionic degrees of freedom can be included and how the boundary conditions can be integrated over. Using these methods, we have performed simulations of liquid H2 and metallic H on a parallel computer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller: J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  2. R. G. Parr and W. Yang. Density Functional Theory of Atoms and Molecules, Oxford, 1989.

    Google Scholar 

  3. R. Car and M. Parrinello: Phys. Rev. Lett. 55, 2471 (1985)

    Article  ADS  Google Scholar 

  4. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos: Rev. Mod. Phys 64, 1045 (1992)

    Article  ADS  Google Scholar 

  5. D. Marx and M. Parrinello: J. Chem. Phys. 104, 4077 (1996)

    Article  ADS  Google Scholar 

  6. M. Sprik: J. Phys.: Condens. Matter 12, A161 (2000)

    Article  ADS  Google Scholar 

  7. M. E. Tuckerman and G. J. Martyna: J. Phys. Chem. B 104, 159 (2000)

    Article  Google Scholar 

  8. W. M. C. Foulkes et al.: Rev. Mod. Phys. 73, 33 (2001)

    Article  ADS  Google Scholar 

  9. B. L. Hammond, Jr. W. A. Lester, and P. J. Reynolds. Monte Carlo Methods in Ab Initio Quantum Chemistry, World scientific lecture and course notes in chemistry, (World Scientific, Singapore, 1994)

    Google Scholar 

  10. J. B. Anderson: ‘Exact quantum chemistry by Monte Carlo methods’ In Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy, ed. S. R. Langhoff, (Kluwer Academic, 1995)

    Google Scholar 

  11. D. M. Ceperley and L. Mitas:‘Quantum Monte Carlo methods in chemistry’. In Advances in Chemical Physics ed. by I. Prigogine and S. A. Rice, (Wiley and Sons, 1996)

    Google Scholar 

  12. J. C. Grossman, L. Mitas, and K. Raghavachari: Phys. Rev. Lett. 75, 3870 (1995)

    Article  ADS  Google Scholar 

  13. M. Dewing: Monte Carlo Methods: Application to hydrogen gas and hard spheres. PhD thesis, University of Illinois at Urbana-Champaign (2000). Available as arXiv:physics/0012030.

    Google Scholar 

  14. W. B. Hubbard and D. J. Stevenson: ‘Interior structure’. In Saturn, ed. by T. Gehrels and M. S. Matthews (University of Arizona Press, 1984)

    Google Scholar 

  15. D. J. Stevenson:‘The role of high pressure experiment and theory in our understanding of gaseous and icy planets’. In Shockwaves in condensed matter, ed. by S. C. Schmidt and N. C. Holmes (Elsevier, 1988)

    Google Scholar 

  16. B. Militzer and E. L. Pollock: Phys. Rev. E 61, 3470 (2000)

    Article  ADS  Google Scholar 

  17. D. M. Ceperley and B. J. Alder: Phys. Rev. B 36, 2092 (1987)

    Article  ADS  Google Scholar 

  18. V. Natoli, R. M. Martin, and D. M. Ceperley: Phys. Rev. Lett. 70, 1952 (1993)

    Article  ADS  Google Scholar 

  19. V. Natoli, R. M. Martin, and D. M. Ceperley: Phys. Rev. Lett. 74, 1601 (1995)

    Article  ADS  Google Scholar 

  20. M. Dewing and D. M. Ceperley: ‘Methods for Coupled Electronic-Ionic Monte Carlo’. In: Recent Advances in Quantum Monte Carlo Methods, II, ed. by S. Rothstein (World Scientific, Singapore), submitted Jan 2001.

    Google Scholar 

  21. P. J. Reynolds, D. M. Ceperley, B. J. Alder, and W. A. Lester: J. Chem. Phys. 77, 5593 (1982)

    Article  ADS  Google Scholar 

  22. D. M. Ceperley and M. Dewing: J. Chem. Phys. 110, 9812 (1999)

    Article  ADS  Google Scholar 

  23. D. M. Ceperley: Rev. Mod. Phys. 67, 279 (1995)

    Article  ADS  Google Scholar 

  24. D. M. Ceperley, M. Holzmann, K. Esler and C. Pierleoni: Backflow Correlations for Liquid Metallic Hydrogen, to appear.

    Google Scholar 

  25. Y. Kwon, D.M. Ceperley and R. M. Martin: Phys. Rev. B 48, 12037 (1993)

    ADS  Google Scholar 

  26. Y. Kwon, D.M. Ceperley and R. M. Martin: Phys. Rev. B 58, 6800 (1998)

    ADS  Google Scholar 

  27. D. M. Ceperley and B. J. Alder: J. Chem. Phys. 81, 5833 (1984)

    Article  ADS  Google Scholar 

  28. T. Ogitsu: ‘MP-DFT (multiple parallel density funtional theory) code, (2000) http://www.ncsa.uiuc.edu/Apps/CMP/togitsu/MPdft.html.

  29. I. F. Silvera and V. V. Goldman: J. Chem. Phys. 69, 4209 (1978)

    Article  ADS  Google Scholar 

  30. P. Diep and J. K. Johnson: J. Chem. Phys. 112, 4465 (2000)

    Article  ADS  Google Scholar 

  31. P. Diep and J. K. Johnson: J. Chem. Phys. 113, 3480 (2000)

    Article  ADS  Google Scholar 

  32. W. Kolos and L. Wolniewicz: J. Chem. Phys. 41, 1964.

    Google Scholar 

  33. B. Militzer and D. M. Ceperley: Phys. Rev. Lett. 85, 1890 (2000)

    Article  ADS  Google Scholar 

  34. B. Militzer. Path Integral Monte Carlo Simulations of Hot Dense Hydrogen. PhD thesis, University of Illinois at Urbana-Champaign, 2000.

    Google Scholar 

  35. N. C. Holmes, M. Ross, and W. J. Nellis: Phys. Rev. B 52, 15835 (1995)

    Article  ADS  Google Scholar 

  36. D. Saumon and G. Chabrier: Phys. Rev. A 44, 5122 (1991)

    Article  ADS  Google Scholar 

  37. D. Saumon and G. Chabrier: Phys. Rev. A 46, 2084 (1992)

    Article  ADS  Google Scholar 

  38. D. Saumon, G. Chabrier, and H. M. Van Horn: Astrophys. J. Sup. 99, 713 (1995)

    Article  ADS  Google Scholar 

  39. W. J. Nellis, A. C. Mitchell, M. van Theil, G. J. Devine, R. J Trainor, and N. Brown: J. Chem. Phys. 79, 1480 (1983)

    Article  ADS  Google Scholar 

  40. D. Hohl, V. Natoli, D. M. Ceperley, and R. M. Martin: Phys. Rev. Lett. 71, 541 (1993)

    Article  ADS  Google Scholar 

  41. J. Kohanoff, S. Scandolo, G. L. Chiarotti, and E. Tosatti: Phys. Rev. Lett. 78, 2783 (1997)

    Article  ADS  Google Scholar 

  42. C. Lin, F. H. Zong and D. M. Ceperley: Phys. Rev. E 64, 016702 (2001)

    Article  ADS  Google Scholar 

  43. D. M. Ceperley; Phys. Rev. Lett. 69, 331 (1992)

    Article  ADS  Google Scholar 

  44. C. Pierleoni, B. Bernu, D. M. Ceperley and W. R. Magro: Phys. Rev. Lett. 73, 2145 (1994); W. R. Magro, D. M. Ceperley, C. Pierleoni, and B. Bernu: Phys. Rev. Lett. 76, 1240 (1996)

    Article  ADS  Google Scholar 

  45. D. M. Ceperley: ‘Path integral Monte Carlo methods for fermions’. In Monte. Carlo and Molecular Dynamics of Condensed Matter Systems, ed. by K. Binder and G. Ciccotti (Editrice Compositori, Bologna, Italy, 1996)

    Google Scholar 

  46. J. Kohanoff and J. P. Hansen: Phys. Rev. E 54, 768 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ceperley, D., Dewing, M., Pierleoni, C. (2002). The Coupled Electronic-Ionic Monte Carlo Simulation Method. In: Nielaba, P., Mareschal, M., Ciccotti, G. (eds) Bridging Time Scales: Molecular Simulations for the Next Decade. Lecture Notes in Physics, vol 605. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45837-9_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-45837-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44317-9

  • Online ISBN: 978-3-540-45837-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics