Skip to main content

A Statistical Mechanical Theory of Quantum Dynamics in Classical Environments

  • Chapter

Part of the book series: Lecture Notes in Physics ((LNP,volume 605))

Abstract

Since it is difficult to simulate the quantum dynamics of large, complex many-body systems, one is led to construct a statistical mechanical description of matter based on a mixture of quantum and classical dynamics. Many physically interesting systems may be partitioned into subsystems where certain degrees of freedom must necessarily be treated quantum mechanically, while others behave classically to a high degree of accuracy. Examples of systems with these characteristics are familiar and include proton and electron transfer processes and systems with electronic degrees of freedom coupled to heavy nuclei. In these cases it is useful to construct a quantum-classical dynamics that not only accounts for the quantum and classical dynamics of the two isolated subsystems but also describes their interaction. [1,2,3] The most widely used approaches are based on surface-hopping schemes where the coupling between the two subsystems induces quantum transitions. [4,5,6,7]

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Pechukas: Phys. Rev. 181, 166, 174 (1969).

    Article  ADS  Google Scholar 

  2. M. F. Herman: Annu. Rev. Phys. Chem. 45, 83 (1994).

    Article  ADS  Google Scholar 

  3. J. C. Tully: Modern Methods for Multidimensional Dynamics Computations in Chemistry, ed. D. L. Thompson, (World Scientific, NY, 1998), p. 34.

    Google Scholar 

  4. J. C. Tully: J. Chem. Phys. 93, 1061 (1990); J.C. Tully: Int. J. Quantum Chem. 25, 299 (1991); S. Hammes-Schiffer and J.C. Tully: J. Chem. Phys. 101, 4657 (1994); D. S. Sholl and J. C. Tully, J. Chem. Phys. 109, 7702 (1998).

    Article  ADS  Google Scholar 

  5. L. Xiao and D. F. Coker: J. Chem. Phys. 100, 8646 (1994); D. F. Coker and L. Xiao: J. Chem. Phys. 102, 496 (1995); H. S. Mei and D.F. Coker: J. Chem. Phys. 104, 4755 (1996).

    Article  ADS  Google Scholar 

  6. F. Webster, P. J. Rossky, and P. A. Friesner: Comp. Phys. Comm. 63, 494 (1991); F. Webster, E. T. Wang, P. J. Rossky, and P. A. Friesner: J. Chem. Phys. 100, 483 (1994).

    Article  MATH  ADS  Google Scholar 

  7. T. J. Martinez, M. Ben-Nun, and R. D. Levine: J. Phys. Chem. A 101, 6389 (1997).

    Article  Google Scholar 

  8. R. Kubo: J. Phys. Soc. (Japan) 12, 570 (1957); R. Kubo: Repts. Prog. Phys. 29, 255 (1966).

    Article  ADS  MathSciNet  Google Scholar 

  9. E. Wigner: Phys. Rev. 40, 749 (1932).

    Article  MATH  ADS  Google Scholar 

  10. R. Kapral and G. Ciccotti: J. Chem. Phys. 110, 8919 (1999).

    Article  ADS  Google Scholar 

  11. K. Imre, E. Özizmir, M. Rosenbaum and P. F. Zwiefel: J. Math. Phys. 5, 1097 (1967); M. Hillery, R. F. O’Connell, M. O. Scully and E. P. Wigner, Phys. Repts. 106, 121 (1984).

    Article  ADS  Google Scholar 

  12. S. Nielsen, R. Kapral and G. Ciccotti: J. Chem. Phys. 115, 5805 (2001).

    Article  ADS  Google Scholar 

  13. I. V. Aleksandrov: Z. Naturforsch. 36a, 902 (1981).

    ADS  Google Scholar 

  14. V. I. Gerasimenko: Theor. Math. Phys. 50, 77 (1982); D. Ya. Petrina, V. I. Gerasimenko and V. Z. Enolskii, Sov. Phys. Dokl. 35, 925 (1990).

    Article  MathSciNet  Google Scholar 

  15. W. Boucher and J. Traschen: Phys. Rev. D 37, 3522 (1988).

    Article  ADS  Google Scholar 

  16. W. Y. Zhang and R. Balescu: J. Plasma Phys. 40, 199 (1988); R. Balescu and W. Y. Zhang: J. Plasma Phys. 40, 215 (1988).

    Article  ADS  Google Scholar 

  17. A. Anderson: Phys. Rev. Lett. 74, 621 (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. O. V. Prezhdo and V. V. Kisil: Phys. Rev. A 56, 162 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  19. C. C. Martens and J.-Y. Fang: J. Chem. Phys. 106, 4918 (1996); A. Donoso and C. C. Martens: J. Phys. Chem. 102, 4291 (1998).

    Article  ADS  Google Scholar 

  20. C. Schütte, preprint SC 99-10 (Konrad-Zuse-Zentrum, 1999).

    Google Scholar 

  21. S. Nielsen, R. Kapral and G. Ciccotti: J. Chem. Phys. 112, 6543 (2000).

    Article  ADS  Google Scholar 

  22. S. Nielsen, R. Kapral and G. Ciccotti: J. Stat. Phys. 101, 225 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  23. D. Mac Kernan, G. Ciccotti and R. Kapral: J. Chem. Phys. 106, (2002).

    Google Scholar 

  24. C. Wan and J. Schofield: J. Chem. Phys. 113, 7047 (2000).

    Article  ADS  Google Scholar 

  25. M. Santer, U. Manthe, G. Stock: J.Chem. Phys. 114, 2001 (2001).

    Article  ADS  Google Scholar 

  26. A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg and M. Zwerger: Rev. Mod. Phys. 59, 1 (1987).

    Article  ADS  Google Scholar 

  27. U. Weiss: Quantum Dissipative Systems (World Scientific, Singapore, 1999).

    Book  MATH  Google Scholar 

  28. E. B. Davis: Quantum Theory of Open Systems (Academic, London, 1976).

    Google Scholar 

  29. T. Dittrich, P. Hänggi G.-L. Ingold, B. Kramer G. Schön and W. Zwerger: Quantum Transport and Dissipation, (Wiley, New York, 1998).

    MATH  Google Scholar 

  30. D. E. Makarov and N. Makri: Chem. Phys. Lett. 221, 482 (1994); N. Makri and D. E. Makarov: J. Chem. Phys. 102, 4600, 4611 (1995); N. Makri: J. Math. Phys. 36, 2430 (1995); E. Sim and N. Makri: Comp. Phys. Commun. 99, 335 (1997): N. Makri: J. Phys. Chem. 102, 4414 (1998).

    Article  ADS  Google Scholar 

  31. N. Makri and K. Thompson: Chem. Phys. Lett. 291, 101 (1998); K. Thompson and N. Makri: J. Chem. Phys. 110, 1343 (1999); N. Makri: J. Phys. Chem. B 103, 2823 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kapral, R., Ciccotti, G. (2002). A Statistical Mechanical Theory of Quantum Dynamics in Classical Environments. In: Nielaba, P., Mareschal, M., Ciccotti, G. (eds) Bridging Time Scales: Molecular Simulations for the Next Decade. Lecture Notes in Physics, vol 605. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45837-9_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-45837-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44317-9

  • Online ISBN: 978-3-540-45837-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics