Skip to main content

Call-by-Value λ-Graph Rewriting Without Rewriting

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2505))

Abstract

Girard’s Geometry of Interaction offers a low-level decomposition of the cut-elimination process in linear logic, which can be used as a compilation technique for functional programming languages. It is the basis of the Geometry of Interaction Machine, which performs call-by-name computations in graph representations of functional programs without doing any graph reduction. Computation is given by a graph traversal algorithm: a simple intuition is that of a single token traveling through a fixed graph (the program to be evaluated), unraveling the evaluation. Here we continue this line of research to derive alternative ways of following this execution path which give call-by-alue computations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Asperti and S. Guerrini. The Optimal Implementation of Functional Programming Languages, volume 45 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1998.

    Google Scholar 

  2. A. Asperti and C. Laneve. Paths, computations and labels in the λ-calculus. In C. Kirchner, editor, Rewriting Techniques and Applications. 5th International Conference, RTA-93, Montreal, Canada, volume 690 of LNCS, pages 152–167. Springer-Verlag, June 1993.

    Google Scholar 

  3. H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Company, second, revised edition, 1984.

    Google Scholar 

  4. G. Cousineau, P.-L. Curien, and M. Mauny. The categorical abstract machine. Science of Computer Programming, 8:173–202, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  5. P.-L. Curien. An abstract framework for environment machines. Theoretical Computer Science, 82:389–402, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  6. V. Danos. La Logique Linéaire appliquée á l’étude de divers processus de Normalisation (principalement du λ-calcul). PhD thesis, Université Paris VII, 1990.

    Google Scholar 

  7. V. Danos and L. Regnier. Local and asynchronous beta-reduction (an analysis of Girard’s execution formula). In Proceedings of the 8th Annual IEEE Symposium on Logic in Computer Science (LICS’93), pages 296–306. IEEE Computer Society Press, 1993.

    Google Scholar 

  8. V. Danos and L. Regnier. Reversible, irreversible and optimal λ-machines. Theoretical Computer Science, 227(1–2):79–97, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  9. N. G. de Bruijn. Lambda calculus notation with nameless dummies. Indagationes Mathematicae, 34:381–392, 1972.

    Google Scholar 

  10. J.-Y. Girard. Linear Logic. Theoretical Computer Science, 50(1):1–102, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  11. J.-Y. Girard. Geometry of interaction 1: Interpretation of System F. In R. Ferro, C. Bonotto, S. Valentini, and A. Zanardo, editors, Logic Colloquium 88, volume 127 of Studies in Logic and the Foundations of Mathematics, pages 221–260. North Holland Publishing Company, Amsterdam, 1989.

    Chapter  Google Scholar 

  12. P. J. Landin. The mechanical evaluation of expressions. Computer Journal, 6:308–320, 1964.

    MATH  Google Scholar 

  13. O. Laurent. A token machine for full geometry of interaction. In S. Abramsky, editor, Proceedings of the 5th International Conference on Typed Lambda Calculi and Applications, (TLCA 2001), volume 2044 of LNCS, pages 283–297. Springer-Verlag, 2001.

    Chapter  Google Scholar 

  14. J.-J. Lévy. Réductions Correctes et Optimales dans le Lambda-Calcul. Thèse d’état, Université Paris VII, January 1978.

    Google Scholar 

  15. I. Mackie. The Geometry of Implementation. PhD thesis, Department of Computing, Imperial College of Science, Technology and Medicine, September 1994.

    Google Scholar 

  16. I. Mackie. The geometry of interaction machine. In Proceedings of the 22nd ACM Symposium on Principles of Programming Languages (POPL’95), pages 198–208. ACM Press, January 1995.

    Google Scholar 

  17. S. L. Peyton Jones. The Implementation of Functional Programming Languages. Prentice Hall International, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fernández, M., Mackie, I. (2002). Call-by-Value λ-Graph Rewriting Without Rewriting . In: Corradini, A., Ehrig, H., Kreowski, H.J., Rozenberg, G. (eds) Graph Transformation. ICGT 2002. Lecture Notes in Computer Science, vol 2505. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45832-8_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-45832-8_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44310-0

  • Online ISBN: 978-3-540-45832-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics