Skip to main content

High Performance Computing, Computational Grid, and Numerical Libraries

  • Conference paper
  • First Online:
Recent Advances in Parallel Virtual Machine and Message Passing Interface (EuroPVM/MPI 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2474))

  • 430 Accesses

Abstract

In this talk we will look at how High Performance computing has changed over the last 10-year and look toward the future in terms of trends. In addition, we advocate the ‘Computational Grids’ to support ‘large-scale’ applications. These must provide transparent access to the complex mix of resources - computational, networking, and storage - that can be provided through aggregation of resources. We will look at how numerical library software can be run in an adaptive fashion to take advantage of available resources.

In the last 50 years, the field of scientific computing has seen rapid, sweeping changes—in vendors, in architectures, in technologies, and in the users and uses of high-performance computer systems. The evolution of performance over the same 50-year period, however, seems to have been a very steady and continuous process. Moore’s law is often cited in this context, and, in fact, a plot of the peak performance of the various computers that could be considered the ”supercomputers” of their times clearly shows that this law has held for almost the entire lifespan of modern computing. On average, performance has increased every decade by about two orders of magnitude.

Two statements have been consistently true in the realm of computer science: (1) the need for computational power is always greater than what is available at any given point, and (2) to access our resources, we always want the simplest, yet the most complete and easy to use interface possible. With these conditions in mind, researchers have directed considerable attention in recent years to the area of grid computing. The ultimate goal is the ability to plug any and all of our resources into a computational grid and draw from these resources-this is analogous to the electrical power grid, much as we plug our appliances into electrical sockets today.

Advances in networking technologies will soon make it possible to use the global information infrastructure in a qualitatively different way—as a computational as well as an information resource. As described in the recent book “The Grid: Blueprint for a New Computing Infrastructure,” this “Grid” will connect the nation’s computers, databases, instruments, and people in a seamless web of computing and distributed intelligence, that can be used in an on-demand fashion as a problem-solving resource in many fields of human endeavor—and, in particular, for science and engineering.

The availability of Grid resources will give rise to dramatically new classes of applications, in which computing resources are no longer localized, but distributed, heterogeneous, and dynamic; computation is increasingly sophisticated and multidisciplinary; and computation is integrated into our daily lives, and hence subject to stricter time constraints than at present. The impact of these new applications will be pervasive, ranging from new systems for scientific inquiry, through computing support for crisis management, to the use of ambient computing to enhance personal mobile computing environments.

In this talk we will explore the issues of developing a prototype system designed specifically for the use of numerical libraries in the grid setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dongarra, J. (2002). High Performance Computing, Computational Grid, and Numerical Libraries. In: Kranzlmüller, D., Volkert, J., Kacsuk, P., Dongarra, J. (eds) Recent Advances in Parallel Virtual Machine and Message Passing Interface. EuroPVM/MPI 2002. Lecture Notes in Computer Science, vol 2474. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45825-5_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-45825-5_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44296-7

  • Online ISBN: 978-3-540-45825-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics