Skip to main content

Conformal Einstein Evolution

  • Chapter
  • First Online:
The Conformal Structure of Space-Time

Part of the book series: Lecture Notes in Physics ((LNP,volume 604))

Abstract

We discuss various properties of the conformal field equations and their consequences for the asymptotic structure of space-times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Andersson, P.T. Chruściel. On hyperboloidal Cauchy data for the vacuum Einstein equations and obstructions to the smoothness of scri. Comm. Math. Phys. 161 (1994) 533–568.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. L. Andersson, P.T. Chruściel. Solutions of the constraint equations in general relativity satisfying hyperboloidal boundary conditions. Dissertationes Mathematicae Polska Akademia Nauk, Inst. Matem., Warszawa, 1996.

    Google Scholar 

  3. L. Andersson, P.T. Chruściel, H. Friedrich. On the regularity of solutions to the Yamabe equation and the existence of smooth hyperboloidal initial data for Einstein’s field equations. Comm. Math. Phys. 149 (1992) 587–612.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. L. Andersson, G. J. Galloway. DS/CFT and spacetime topology. http://xxx.lanl.gov/archive/hep-th/0202161

  5. A. Ashtekar. Asymptotic properties of isolated systems: Recent developments. In: B. Bertotti et. al (eds.) General Relativity and Gravitation Dordrecht, Reidel, 1984.

    Google Scholar 

  6. R. Beig, W. Simon. Proof of a multipole conjecture due to Geroch. Comm. Math. Phys. 79 (1981) 581–589.

    Article  MathSciNet  Google Scholar 

  7. B. K. Berger. Numerical Approaches to Spacetime Singularities. http://xxx.lanl.gov/archive/gr-qc/0201056

  8. L. Blanchet. Post-Newtonian Gravitational Radiation. In: B. Schmidt (ed.), Einstein’s Field Equations and Their Physical Implications. Berlin, Springer, 2000.

    Google Scholar 

  9. H. Bondi, M. G. J. van der Burg, A. W. K. Metzner. Gravitational waves in general relativity VII. Waves from axi-symmetric isolated systems. Proc. Roy. Soc A 269 (1962) 21–52.

    Article  MATH  ADS  Google Scholar 

  10. H. L. Bray. Proof of the Riemannian Penrose conjecture using the positive mass theorem. J. Diff. Geom. to appear. http://xxx.lanl.gov/math.DG/9911173

  11. B. Carter. Global structure of the Kerr family of gravitational fields. Phys. Rev. 174 (1968) 1559–1571.

    Article  MATH  ADS  Google Scholar 

  12. Y. Choquet-Bruhat, J. W. York. The Cauchy problem. In: A. Held (ed.) General Relativity and Gravitation, Vol. 1. New York, Plenum, 1980.

    Google Scholar 

  13. Y. Choquet-Bruhat, J. Isenberg, J. W. York. Einstein constraints on asymptotically Euclidean manifolds. Phys. Rev. D 61 (2000) 084034.

    Article  ADS  MathSciNet  Google Scholar 

  14. P.T. Chruściel, O. Lengard. Solutions of wave equations in the radiation regime. Preprint (2002). http://xxx.lanl.gov/archive/math.AP/0202015

  15. P.T. Chruściel, E. Delay. Existence of non-trivial, vacuum, asymptotically simple space-times. Class. Quantum Grav. 19 (2002) L 71–L 79. Erratum Class. Quantum Grav. 19 (2002) 3389.

    Google Scholar 

  16. J. Corvino. Scalar curvature deformation and a gluing construction for the Einstein constraint equations. Comm. Math. Phys. 214 (2000) 137–189.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. C. Cutler, R. M. Wald. Existence of radiating Einstein-Maxwell solutions which are C on all of J and J +. Class. Quantum Grav. 6 (1989) 453–466.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. S. Dain. Initial data for stationary space-times near space-like infinity. Class. Quantum Grav. 18 (2001) 4329–4338.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. S. Dain, H. Friedrich. Asymptotically Flat Initial Data with Prescribed Regularity. Comm. Math. Phys. 222 (2001) 569–609. http://xxx.lanl.gov/archive/gr-qc/0102047

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. S. Dain, J. A. Valiente-Kroon. Conserved quantities in a black hole collision. Class. Quantum Grav. 19 (2002) 811–815.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. J. Dieudonné. Treatise on Analysis, Vol IV. Academic Press, New York, 1974.

    MATH  Google Scholar 

  22. G. F. R. Ellis, B. G. Schmidt. Classification of singular space-times. GRG 10 (1979) 989–997.

    MATH  MathSciNet  Google Scholar 

  23. H. Friedrich. On the regular and the asymptotic characteristic initial value problem for Einstein’s vacuum field equations. Proceedings of the 3rd Gregynog Relativity Workshop on Gravitational Radiation Theory MPI-PEA/Astro 204 (1979) 137–160 and Proc. Roy. Soc., A 375 (1981) 169–184.

    Google Scholar 

  24. H. Friedrich. The asymptotic characteristic initial value problem for Einstein’s vacuum field equations as an initial value problem for a first-order quasilinear symmetric hyperbolic system. Proc. Roy. Soc., A 378 (1981) 401–421.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. H. Friedrich. On the Existence of Analytic Null Asymptotically Flat Solutions of Einstein’s Vacuum Field Equations. Proc. Roy. Soc. Lond. A 381 (1982) 361–371.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. H. Friedrich. Cauchy Problems for the Conformal Vacuum Field Equations in General Relativity. Comm. Math. Phys. 91 (1983) 445–472.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. H. Friedrich. On the hyperbolicity of Einstein’s and other gauge field equations. Comm. Math. Phys. 100 (1985) 525–543.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. H. Friedrich. On purely radiative space-times. Comm. Math. Phys. 103 (1986) 35–65.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. H. Friedrich. Existence and structure of past asymptotically simple solutions of Einstein’s field equations with positive cosmological constant. J. Geom. Phys. 3 (1986) 101–117.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. H. Friedrich. On the existence of n-geodesically complete or future complete solutions of Einstein’s equations with smooth asymptotic structure. Comm. Math. Phys. 107 (1986) 587–609.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. H. Friedrich. On static and radiative space-times. Comm. Math. Phys., 119 (1988) 51–73.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. H. Friedrich. On the global existence and the asymptotic behaviour of solutions to the Einstein-Maxwell-Yang-Mills equations. J. Diff. Geom., 34 (1991) 275–345.

    MATH  MathSciNet  Google Scholar 

  33. H. Friedrich. On the existence of hyperboloidal initial data. In: Z. Perjés (Ed.): Relativity Today. New York: Nova Science, 1992.

    Google Scholar 

  34. H. Friedrich. Asymptotic structure of space-time. In: A. Janis, J. Porter (Eds.): Recent Advances in General Relativity. Boston, Basel, Berlin: Birkhäuser, 1992.

    Google Scholar 

  35. H. Friedrich. Einstein equations and conformal structure: existence of anti-de Sitter-type space-times. J. Geom. Phys., 17 (1995) 125–184.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. H. Friedrich. Einstein equations and conformal structure. In: Geometric Issues in the Foundations of Science P. Tod et al. (eds.), Oxford University Press, Oxford, 1996.

    Google Scholar 

  37. H. Friedrich. Hyperbolic Reductions for Einstein’s Equations. Class. Quantum Gravity 13 (1996) 1451–1469.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. H. Friedrich. Gravitational fields near space-like and null infinity. J. Geom. Phys. 24 (1998) 83–163.

    Article  ADS  MathSciNet  Google Scholar 

  39. H. Friedrich. Evolution equations for gravitating ideal fluid bodies in general relativity. Phys. Rev. D 57 (1998) 2317–2322.

    Article  ADS  MathSciNet  Google Scholar 

  40. H. Friedrich. Einstein’s equations and geometric asymptotics. In: N. Dadhich, J. Narlikar (Eds.): Gravitation and Relativity at the Turn of the Millennium. Inter-University Centre for Astronomy and Astrophysics, Pune, India, 1998. http://xxx.lanl.gov/archive/gr-qc/9804009

    Google Scholar 

  41. H. Friedrich. Conformal geodesics on vacuum space-times. Preprint 2002. http://xxx.lanl.gov/archive/gr-qc/0201006

  42. H. Friedrich, J. Kánnár Bondi systems near space-like infinity and the calculation of the NP-constants. J. Math. Phys. 41, (2000), 2195–2232.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  43. H. Friedrich, J. Kánnár. Calculating asymptotic quantities near space-like and null infinity from Cauchy data. Ann. Phys. (Leipzig) 9, (2000), 321–330. http://xxx.lanl.gov/archive/gr-qc/9911103

    Article  MATH  MathSciNet  Google Scholar 

  44. H. Friedrich, G. Nagy. The initial boundary value problem for Einstein’s vacuum field equations. Comm. Math. Phys. 201 (1999) 619–655.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  45. H. Friedrich, A. Rendall. The Cauchy Problem for the Einstein Equations. In: B. Schmidt (ed.), Einstein’s Field Equations and Their Physical Implications. Berlin, Springer, 2000.

    Google Scholar 

  46. H. Friedrich, B. G. Schmidt. Conformal geodesics in general relativity. Proc. Roy. Soc. Lond. A 414 (1987) 171–195.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  47. H. Friedrich, J. Stewart. Characteristic Initial Data and Wave Front Singularities in General Relativity. Proc. Roy. Soc. Lond. A 385 (1983) 345–371.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  48. K. O. Friedrichs. Symmetric hyperbolic linear differential equations. Comm. Pure Appl. Math. 7 (1954) 345–392.

    Article  MATH  MathSciNet  Google Scholar 

  49. R. Geroch. Asymptotic structure of space-time. In: F. P. Esposito, L. Witten (eds.) Asymptotic Structure of Space-Time. New York, Plenum, 1977.

    Google Scholar 

  50. R. P. Geroch, G. Horowitz. Asymptotically simple does not imply asymptotically Minkowskian. Phys. Rev. Lett. 40 (1978) 203–206.

    Article  ADS  Google Scholar 

  51. S. W. Hawking, R. Penrose. The singularities of gravitational collapse and cosmology. Proc. Roy. Soc. A 314 (1970) 529–548.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  52. S. W. Hawking, G. F. R. Ellis. The Large Scale Structure of Space-Time. Cambridge, Cambridge University Press, 1973.

    Book  MATH  Google Scholar 

  53. P. Hübner. General relativistic scalar field models and asymptotic flatness. Class. Quantum Grav. 12 (1995) 791–808.

    Article  MATH  ADS  Google Scholar 

  54. P. Hübner. From now to timelike infinity on a finite grid. Class. Quantum Grav. 18 (2001) 1871–1884.

    Article  MATH  ADS  Google Scholar 

  55. G. Huisken, T. Ilmanen. The Riemannian Penrose inequality. Int. Math. Res. Not. 20 (1997) 1045–1058.

    Article  MathSciNet  Google Scholar 

  56. W. Israel. Internal structure of black holes. In: F. W. Hehl. et al. (eds.) Black Holes: Theory and Observation. Berlin, Springer, 1998

    Google Scholar 

  57. J. Kannar On the existence of C solutions to the asymptotic characteristic initial value problem in general relativity. Proc. Roy. Soc. A 452 (1996) 945–952.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  58. T. Kato. The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal., 58 (1975) 181–205.

    Article  MATH  Google Scholar 

  59. D. Kennefick, N. O’Murchadha. Weakly decaying asymptotically flat static and stationary solutions to the Einstein equations. Class. Quantum. Grav. 12 (1995) 149–158.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  60. O. Lengard. Solution of the Einstein equation, wave maps, and semilinear waves in the radiation regime. Ph. D. thesis, Université de Tours, 2001. http://www/phys.uni-tours.fr/~piotr/papers/batz

  61. E. T. Newman, R. Penrose. An approach to gravitational radiation by a methods of spin coefficients. J. Math. Phys. 3 (1962) 566–578.

    Article  ADS  MathSciNet  Google Scholar 

  62. E. T. Newman, R. Penrose. 10 exact gravitationally conserved quantities. Phys. Rev. Lett. 15 (1965) 231–233.

    Article  ADS  MathSciNet  Google Scholar 

  63. E. T. Newman, R. Penrose. New conservation laws for zero rest-mass fields in asymptotically flat space-times. Proc. Roy. Soc. A 305 (1968) 175–204.

    Article  ADS  Google Scholar 

  64. K. Ogiue. Theory of conformal connections. Kodai Math. Sem. Rep. 19 (1967) 193–224.

    Article  MATH  MathSciNet  Google Scholar 

  65. R. Penrose. Asymptotic properties of fields and space-time. Phys. Rev. Lett., 10 (1963) 66–68.

    Article  ADS  MathSciNet  Google Scholar 

  66. R. Penrose. Zero rest-mass fields including gravitation: asymptotic behaviour. Proc. Roy. Soc. Lond., A 284 (1965) 159–203.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  67. R. Penrose. Gravitational collapse and space-time singularities. Phys. Rev. Lett., 14 (1965) 57–59.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  68. R. Penrose. Gravitational collapse: the role of general relativity. Riv. Nuovo Cimento, 1 (1965) 252–276.

    Google Scholar 

  69. R. Penrose. Naked singularities. Ann. N. Y. Acad. Sci., 224 (1973) 125–134.

    Article  ADS  Google Scholar 

  70. R. Penrose. Relativistic symmetry groups. In: A. O. Barut (ed.), Group Theory in Non-Linear Problems. New York, Reidel, 1974.

    Google Scholar 

  71. R. Penrose. Singularities of space-time. In: N. R. Leibowitz et al. (eds.), Theoretical Principles in Astrophysics and Relativity. University of Chicago Press, 1978.

    Google Scholar 

  72. R. Penrose. Singularities and time-asymmetry. In: S. W. Hawking, W. Israel (eds.), General Relativity. Cambridge University Press, 1979.

    Google Scholar 

  73. R. K. Sachs. Gravitational waves in general relativity VI. The outgoing radiation condition. Proc. Roy. Soc A 264 (1961) 309–338.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  74. R. K. Sachs. Gravitational waves in general relativity VIII. Waves in asymptotically flat space-time. Proc. Roy. Soc A 270 (1962) 103–126.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  75. R. K. Sachs. On the characteristic initial value problem in gravitational theory. J. Math. Phys. 3 (1962) 908–914.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  76. M. Sugiura. Unitary Representations and Harmonic Analysis. North Holland, Amsterdam, 1990.

    MATH  Google Scholar 

  77. M. E. Taylor. Partial Differential Equations, Vol. 3. Berlin, Springer, 1996

    Google Scholar 

  78. K. S. Thorne. The theory of gravitational radiation: An introductory review. In: N. Deruelle, T. Piran (eds.) Gravitational Radiation. Amsterdam, North-Holland, 1983.

    Google Scholar 

  79. R. M. Wald. Gravitational collapse and cosmic censorship. In: B. R. Iyer, B. Bhawal, Black Holes, Gravitational Radiation and the Universe. Dordrecht, Kluwer Academic Publishers, 1999.

    Google Scholar 

  80. H. Weyl. Mathematische Analyse des Raumproblems. Springer, Berlin, 1923. Reprinted in: Das Kontinuum. Chelsea Publ. Comp., New York, 1960.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Friedrich, H. (2002). Conformal Einstein Evolution. In: Frauendiener, J., Friedrich, H. (eds) The Conformal Structure of Space-Time. Lecture Notes in Physics, vol 604. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45818-2_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-45818-2_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44280-6

  • Online ISBN: 978-3-540-45818-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics