Advertisement

Generalized Independent Component Analysis as Density Estimation

  • Francesco Palmieri
  • Alessandra Budillon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2486)

Abstract

We propose a new generalized ICA framework in the form of a multi-layer perceptron as a density estimator. We adopt an optimization strategy based on two criteria: a minimum reconstruction error and a minimum distance from a uniform distribution. Some simulation results are also reported to validate the proposed algorithm.

Keywords

Generalized ICA Multilayer ICA Density estimator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Karhunen J. and Joutsensalo J.: Representation and separation of signals using nonlinear PCA type learning, Neural Networks, vol. 7:113–127, (1994).CrossRefGoogle Scholar
  2. [2]
    Kramer M. A.: Nonlinear principal component analysis using autoassociative neural networks, AIChE J., vol. 37, n. 2:233–243, (1991).CrossRefGoogle Scholar
  3. [3]
    Magnus J. R. and Neudecker H.: Matrix Differential Calculus with Applications in Statistics and Econometrics, John Wiley & Sons Ltd, (1988).Google Scholar
  4. [4]
    Marques G. C. and Almeida L. B.: Separation of nonlinear mixtures using pattern repulsion, Proc. of Int. Worksh. on ICA and BSS, Aussois, France, (1999).Google Scholar
  5. [5]
    Palmieri F., Mattera D., and Budillon A.: Multilayer Independent Component Analysis, Proc. of Int. Worksh. on ICA and BSS, Aussois, Francia, (1999).Google Scholar
  6. [6]
    Palmieri F. and Budillon A.: Multi-Class Independent Component Analysis (MUCICA) for Rank-deficient Distributions. Advances in Independent Component Analysis, Ed. M. Girolami, Springer Verlag, (2000).Google Scholar
  7. [7]
    Principe J.C., Xu D., Fisher J.: Information Theoretic Learning. Unsupervised Adaptive Filtering, vol 1, Simon Haykin Editor, Wiley, (2000).Google Scholar
  8. [8]
    Taleb A. and Jutten C.: Source separation in post nonlinear mixtures, IEEE Transactions on Signal Processing, vol. 47, n. 10:2807–2820, (1999).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Francesco Palmieri
    • 1
  • Alessandra Budillon
    • 1
  1. 1.Dip. di Ingegneria dell’InformazioneSeconda Universitá di NapoliAversaItaly

Personalised recommendations