Advertisement

A Comparison of Signal Compression Methods by Sparse Solution of Linear Systems

  • Davide Mattera
  • Francesco Palmieri
  • Michele Di Monte
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2486)

Abstract

This paper deals with the problem of signal compression by linearly expanding the signal to be compressed along the elements of an overcomplete dictionary. The compression is obtained by selecting a few elements of the dictionary for the expansion. Therefore, signal description is realized by specifying the selected elements of the dictionary as well as their coefficients in the linear expansion. A crucial issue in this approach is the algorithm for selecting, in correspondence of each realization of the signal, the elements of the dictionary to be used for the expansion. In this paper we consider different possible algorithms for basis selection and compare their performances in a practical case of speech signal.

Keywords

Signal compression sparse solution of linear system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Aase, S., Husoy, J., Skretting, K., Engan, K.: Optimized signal expansions for sparse representation. IEEE Trans. on Signal Processing 49 (2001) 1087–1096CrossRefGoogle Scholar
  2. [2]
    Natarajan, B.: Sparse approximate solutions to linear systems. SIAM J. Computing 24 (1995) 227–234zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Rao, B., Delgado, K.: An affine scaling methodology for best basis selection. IEEE Trans. on Signal Processing 47 (1999) 187–200zbMATHCrossRefGoogle Scholar
  4. [4]
    Vanderbei, R. J.: LOQO user’s manual-version 3.10. Technical Report SOR-97-08, Princeton University, Statistics and Operations Research (1997) Code available at http://www.princeton.edu~rvdb/
  5. [5]
    Chen, S., Donoho, D., Saunders, M.: Atomic decomposition by basis pursuit. SIAM J. Scientific Computing 20 (1999) 33–61zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Coifman, R., Wickerhauser, M.: Entropy-based algorithms for best basis selections. IEEE Trans. on Information Theory 38 (1992) 713–718zbMATHCrossRefGoogle Scholar
  7. [7]
    Mallat, S., Zhang, Z.: Matching pursuit in a time-frequency dictionary. IEEE Trans. Signal Processing 41 (1993) 3397–3415zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Davide Mattera
    • 1
  • Francesco Palmieri
    • 2
  • Michele Di Monte
    • 1
  1. 1.Dipartimento di Ingegneria Elettronica e delle TelecomunicazioniUniversità degli Studi di Napoli Federico IINapoliItaly
  2. 2.Dipartimento di Ingegneria dell’InformazioneSeconda Universitáa degli Studi di NapoliAversaItaly

Personalised recommendations