Optimization of Bandwidth and Energy Consumption in Wireless Local Area Networks

  • Marco Conti
  • Enrico Gregori
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2459)


In the recent years the proliferation of portable computers, handheld digital devices, and PDAs has led to a rapid growth in the use of wireless technologies for the Local Area Network (LAN) environment. Beyond supporting wireless connectivity for fixed, portable and moving stations within a local area, the wireless LAN (WLAN) technologies can provide a mobile and ubiquitous connection to the Internet information services. The design of WLANs has to concentrate on bandwidth consumption because wireless networks deliver much lower bandwidth than wired networks, e.g., 2-11 Mbps [1] versus 10-150 Mbps [2]. In addition, the finite battery power of mobile computers represents one of the greatest limitations to the utility of portable computers [3], [4]. Hence, a relevant performance- optimization problem is the balancing between the minimization of battery consumption, and the maximization of the channel utilization. In this paper, we study bandwidth and energy consumption of the IEEE 802.11 standard, i.e., the most mature technology for WLANs. Specifically, we derived analytical formulas that relate the protocol parameters to the maximum throughput and to the minimal energy consumption. These formulas are used to define an effective method for tuning at run time the protocol parameters.


Medium Access Control Successful Transmission Channel Utilization Message Length Transmission Attempt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    ANSI/IEEE Standard 802.11, “Part 11: Wireless LAN-Medium Access Control (MAC) and Physical Layer (PHY) Specification”, August 1999Google Scholar
  2. 2.
    Stallings W., Local & Metropolitan Area Networks, Fifth Edition, Prentice Hall 1996, pp. 356–383.Google Scholar
  3. 3.
    H. Woesner, J.P. Ebert, M. Schlager, A. Wolisz, “Power-saving mechanisms in emerging standards for wireless LANs: The MAC level perspective”, IEEE Personal Comm, 1998, pp. 40–48.Google Scholar
  4. 4.
    N. Bambos, “Toward power-sensitive network architectures in wireless communications: Concepts, issues and design aspects”, IEEE Personal Comm, 1998, pp. 50–59.Google Scholar
  5. 5.
    Weinmiller J., Woesner H., Ebert J.P., Wolisz A., “Analyzing and tuning the Distributed Coordination Function in the IEEE 802.11 DFWMAC Draft Standard”, Proc. Int. Workshop on Modeling, MASCOT 96, San Jose, CA.Google Scholar
  6. 6.
    J. Weinmiller, M. Schläger, A. Festag, A. Wolisz, “ Performance Study of Access control in Wireless LANs-IEEE 802.11 DFWMAC and ETSI RES 10 HIPERLAN”, Mobile Networks and Applications, Vol. 2, 1997, pp.55–67CrossRefGoogle Scholar
  7. 7.
    L. Bononi, M. Conti, L. Donatiello, “Design and Performance Evaluation of a Distributed Contention Control (DCC) Mechanism for IEEE 802.11 Wireless Local Area Networks”, Journal of Parallel and Distributed Computing, Accademic Press Vol.60 N.4 di Aprile 2000.Google Scholar
  8. 8.
    M. Gerla, L. Kleinrock, “Closed loop stability control for S-Aloha satellite communications”, Proc. Fifth Data Communications Symp., Sept. 1977, pp. 2.10–2.19.Google Scholar
  9. 9.
    B. Hajek, T. Van Loon, “Decentralized dynamic control of a multiaccess broadcast channel”, IEEE Trans Automat. Control, Vol.27, 1982, pp. 559–569.zbMATHCrossRefGoogle Scholar
  10. 10.
    F. Kelly, “Sthocastic Models of computer communications systems”, J. Royal Statist. Soc., Series B, Vol. 47, 1985, pp. 379–395.zbMATHGoogle Scholar
  11. 11.
    F. Cali’, Conti M., E. Gregori, “Dynamic Tuning of the IEEE 802.11 Protocol to Achieve a Theoretical Throughput Limit”, IEEE/ACM Transactions on Networking, Volume 8, No. 6 (Dec. 2000), pp. 785–799.CrossRefGoogle Scholar
  12. 12.
    F. Cali’, Conti M., E. Gregori, “Dynamic IEEE 802.11: design, modeling and performance evaluation”, IEEE Journal on Selected Areas in Communications, 18(9), September 2000. pp. 1774–1786.CrossRefGoogle Scholar
  13. 13.
    Bianchi G., Fratta L., Olivieri M., “Performance Evaluation and Enhancement of the CSMA/CA MAC protocol for 802.11 Wireless LANs”, proceedings of PIMRC 1996, 10/1996, Taipei, Taiwan, pp. 392–396.Google Scholar
  14. 14.
    J.P. Monks, V. Bharghavan, W.W. Hwu, “A Power Controlled Multiple Access Protocol for Wireless Packet Networks”, in Proc Infocom’01, Anchorage, Alaska (Apr. 2001Google Scholar
  15. 15.
    L. Bononi, M. Conti, L. Donatiello, “A Distributed Mechanism for Power Saving in IEEE 802.11 Wireless LANs”, ACM/Kluwer Mobile Networks and Applic. Journal, Vol. 6, N. 3 (2001), pp. 211–222.zbMATHCrossRefGoogle Scholar
  16. 17.
    K. Bieseker, “The Promise of Broadband Wireless”, IT Pro November/December 2000, pp. 31–39.Google Scholar
  17. 18.
    R. Bruno, M. Conti, E. Gregori, “WLAN technologies for mobile ad-hoc networks”, Proc. HICSS-34, Maui, Hawaii, January 3–6, 2001. An extended version can be found in the Chapter 4 of Handbook of Wireless Networks and Mobile Computing (I. Stojmenovic Editor), John Wiley & Sons, New York, 2001.Google Scholar
  18. 19.
    Goodman J., Greenberg A.G., Madras N., March P., “Stability of Binary Exponential Backoff”, app. in the Proc. of the 17-th Annual ACM Symp. on Theory of Comp., Providence, May 1985.Google Scholar
  19. 20.
    Hammond J.L., O’Reilly P.J.P., Performance Analysis of Local Computer Networks, Addison-Wesley 1988.Google Scholar
  20. 21.
    Hastad J., Leighton T., Rogoff B., “Analysis of Backoff Protocols for Multiple Access Channels”, Siam J. Computing vol. 25, No. 4, 8/1996, pp. 740–774.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 22.
    Gallagher R.G., “A perspective on multiaccess channels”, IEEE Trans. Information Theory, vol. IT-31, No.2, 3/1985, pp. 124–142.CrossRefMathSciNetGoogle Scholar
  22. 23.
    D. Bertsekas, R. Gallager, "Data Networks" Prentice Hall, 1992.Google Scholar
  23. 24.
    R. Bruno, M. Conti, E. Gregori, "Optimization of Efficiency and Energy Consumption in p-persistent CSMA-based Wireless LANs", IEEE Transactions on Mobile Computing, Vol. 1 N.1, January 2002.Google Scholar
  24. 25.
    A. Chandra V. Gumalla, J.O. Limb, “Wireless Medium Access Control Protocols”, IEEE Communications Surveys Second Quarter 2000.Google Scholar
  25. 26.
    G.H. Forman, J. Zahorjan, “The challenges of mobile computing”, IEEE Computer, April 1994, pp.38–47.Google Scholar
  26. 27.
    T. Imielinsky, B.R. Badrinath, “Mobile Computing: Solutions and Challenges in Data Management”, Communications of ACM, Oct. 1994.Google Scholar
  27. 28.
    R. Kravets, P. Krishnan, “Power Management Techniques for Mobile Communication”, Proceedings of The Fourth Annual ACM/IEEE International Conference on Mobile Computing and Networking (MOBICOM’98).Google Scholar
  28. 29.
    Conti M., Gregori E., Lenzini L., “Metropolitan Area Networks”, Springer Verlag, London, 1997.Google Scholar
  29. 30.
    Chen K.C., “Medium Access Control of Wireless LANs for Mobile Computing”, IEEE Networks, 9–10/1994.Google Scholar
  30. 31.
    W.R. Stevens. TCP/IP Illustrated, Volume 1: The Protocols, Addison-Wesley, Reading, MA, 1994.Google Scholar
  31. 32.
    M. Stemm, R.H. Katz, “Measuring and Reducing Energy Consumption of Network Interfaces in Hand-Held Devices”, Proc. 3rd International workshop on Mobile Multimedia Communications (MoMuC-3), Princeton, NJ, September 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Marco Conti
    • 1
  • Enrico Gregori
    • 1
  1. 1.Consiglio Nazionale delle Ricerche IIT InstitutePisaItaly

Personalised recommendations