Advertisement

Performance Issues of Multimedia Applications

  • Edmundo de Souza e Silva
  • Rosa M. M. Leão
  • Berthier Ribeiro-Neto
  • Sérgio Campos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2459)

Abstract

The dissemination of the Internet technologies, increasing communication bandwidth and processing speeds, and the growth in demand for multimedia information gave rise to a variety of applications. Many of these applications demand the transmission of a continuous flow of data in real time. As such, continuous media applications may have high storage requirements, high bandwidth needs and strict delay and loss requirements. These pose significant challenges to the design of such systems, specially since the Internet currently provides no QoS guarantees to the data it delivers. An extensive range of problems have been investigated in the last years from issues on how to efficiently store and retrieve continuous media information in large systems, to issues on how to efficiently transmit the retrieved information via the Internet. Although broad in scope, the problems under investigation are tightly coupled. The purpose of this chapter is to survey some of the techniques proposed to cope with these challenges.

Keywords

Packet Loss Data Block Multimedia Application Bandwidth Requirement Multimedia Server 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Adas. Traffic Models in Broadband Networks. IEEE Communications Magazine, (7):82–89, 1997.Google Scholar
  2. 2.
    C. C. Aggarwal, J. L. Wolf, and P. S. Wu. On optimal batching policies for videoon-demand storage server. In Proc. of the IEEE Conf. on Multimedia Systems, 1996.Google Scholar
  3. 3.
    C. C. Aggarwal, J. L. Wolf, and P. S. Wu. A permutation-based pyramid broadcasting scheme for video-on-demand systems. In Proc. of the IEEE Conf. on Multimedia Systems, 1996.Google Scholar
  4. 4.
    C.C. Aggarwal, J.L. Wolf, and P.S. Wu. On optimal piggyback merging policies. In Proc. ACM Sigmetrics’96, pages 200–209, May 1996.Google Scholar
  5. 5.
    J. Almeida, D. Eager, M. Ferris, and M. Vernon. Provisioning content distribution networks for streaming media. In Proc. of IEEE/Infocom’02, June 2002.Google Scholar
  6. 6.
    J. Apostolopoulos, T. Wong, W. Tan, and S. Wee. On multiple description streaming with content delivery networks. In Proc. of IEEE/Infocom’02, NY, June 2002.Google Scholar
  7. 7.
    A. Bar-Noy, G. Goshi, R. E. Ladner, and K. Tam. Comparison os stream merging algorithms for media-on-demand. In Proc. MMCN’02, January 2002.Google Scholar
  8. 8.
    S. Berson, R. Muntz, S. Ghandeharizadeh, and X. Ju. Staggered striping in multimedia information systems. In ACM SIGMOD Conference, 1994.Google Scholar
  9. 9.
    W. Bolosky, J.S. Barrera, R. Draves, R. Fitzgerald, G. Gibson, M. Jones, S. Levi, N. Myhrvold, and R. Rashid. The Tiger video fileserver. In Proc. NOSSDAV’96. 1996.Google Scholar
  10. 10.
    J-C. Bolot. Characterizing end-to-end packet delay and loss in the Internet. In Proc. ACM Sigcomm’93, pages 289–298, September 1993.Google Scholar
  11. 11.
    J-C. Bolot, S. Fosse-Parisis, and D. Towsley. Adaptative FEC-based error control for Internet telephony. In Proc. of IEEE/Infocom’99, pages 1453–1460, 1999.Google Scholar
  12. 12.
    J-C. Bolot and A. Vega-García. The case for FEC-based error control for packet audio in the Internet. ACM Multimedia Systems, 1997.Google Scholar
  13. 13.
    Y. Cai, K. Hua, and K. Vu. Optimizing patching performance. In Proc. SPIE/ACM Conference on Multimedia Computing and Networking, 1999.Google Scholar
  14. 14.
    S. Campos, B. Ribeiro-Neto, A. Macedo, and L. Bertini. Formal verification and analysis of multimedia systems. In ACM Multimedia Conference. Orlando, November 1999.Google Scholar
  15. 15.
    S. W. Carter and D. D. E. Long. Improving video-on-demand server efficiency through stream tapping. In Sixth International Conference on Computer Communications and Networks, pages 200–207, 1997.Google Scholar
  16. 16.
    S.-H.G. Chan and F. Tobagi. Tradeoff between system profit and user delay/loss in providing near video-on-demand service. IEEE Transactions on Circuits and Systems for Video Technology, 11(8):916–927, August 2001.CrossRefGoogle Scholar
  17. 17.
    E. Chang and A. Zakhor. Cost analyses for VBR video servers. IEEE Multimedia, 3(4):56–71, 1996.CrossRefGoogle Scholar
  18. 18.
    A.L. Chervenak, D.A. Patterson, and R.H. Katz. Choosing the best storage system for video service. In ACM Multimedia Conf., pages 109–119. SF, 1995.Google Scholar
  19. 19.
    T. Chua, J. Li, B. Ooi, and K. Tan. Disk striping strategies for large video-ondemand servers. In ACM Multimedia Conf., pages 297–306, 1996.Google Scholar
  20. 20.
    A. Dan, D. Sitaram, and P. Shahabuddin. Scheduling policies for an on-demand video server with batching. In Proc. of the 2nd ACM Intl. Conf. on Multimedia, pages 15–23, 1994.Google Scholar
  21. 21.
    A. Dan, D. Sitaram, and P. Shahabuddin. Dynamic batching policies for an ondemand video server. Multimedia Systems, (4):112–121, 1996.Google Scholar
  22. 22.
    M.C. Diniz and E. de Souza e Silva. Models for jitter control at destination. In Proc., IEEE Intern. Telecomm. Symp., pages 118–122, 1996.Google Scholar
  23. 23.
    D. Eager, M. Ferris, and M. Vernon. Optimized caching in systems with heterogenous client populations. Performance Evaluation, (42):163–185, 2000.Google Scholar
  24. 24.
    D. Eager and M. Vernon. Dynamic skyscraper broadcasts for video-on-demand. In 4 th International Workshop on Multimedia Information Systems, September 1998.Google Scholar
  25. 25.
    D. Eager, M. Vernon, and J. Zahorjan. Optimal and efficient merging schedules for video-on-demand servers. In Proc. ACM Multimedia’99, November 1999.Google Scholar
  26. 26.
    D. Eager, M. Vernon, and J. Zahorjan. Bandwidth skimming: A technique for cost effiective video-on-demand. In Proc. Multimedia Computing and Networking, January 2000.Google Scholar
  27. 27.
    D. Eager, M. Vernon, and J. Zahorjan. Minimizing bandwidth requirements for on-demand data delivery. IEEE Transactions on Knowledge and Data Engineering, 13(5):742–757, September 2001.CrossRefGoogle Scholar
  28. 28.
    F. Fabbrocino, J.R. Santos, and R.R. Muntz. An implicitly scalable, fully interactive multimedia storage server. In DISRT’98, pages 92–101. Montreal, July 1998.Google Scholar
  29. 29.
    D.R. Figueiredo and E. de Souza e Silva. Efficient mechanisms for recovering voice packets in the Internet. In Proc. of IEEE/Globecom’99, Global Internet Symp., pages 1830–1837, December 1999.Google Scholar
  30. 30.
    C.S. Freedman and D.J. DeWitt. The SPIFFI scalable video-on-demand system. In ACM Multimedia Conf., pages 352–363, 1995.Google Scholar
  31. 31.
    V.S. Frost and B. Melamed. Traffic Modeling for Telecommunications Networks. IEEE Communications Magazine, 32(3):70–81, 1994.CrossRefGoogle Scholar
  32. 32.
    L. Gao and D. Towsley. Supplying instantaneous video-on-demand services using controlled multicast. In IEEE International Conference on Multimedia Computing and Systems, pages 117–121, 1999.Google Scholar
  33. 33.
    S. Ghandeharizadeh, R. Zimmermann, W. Shi, R. Rejaie, D. Ierardi, and T.-W. Li. Mitra: a scalable continuous media server. Multimedia Tools and Applications, 5(1):79–108, July 1997.CrossRefGoogle Scholar
  34. 34.
    L. Golubchick, J.C.S. Lui, E. de Souza e Silva, and R. Gail. Evaluation of performance tradeoffs in scheduling techniques for mixed workload multimedia servers. Journal of Multimedia Tools and Applications, to appear, 2002.Google Scholar
  35. 35.
    L. Golubchick, J.C.S. Lui, and R. Muntz. Reducing i/o demand in video-ondemand storage servers. In Proc. ACM Sigmetrics’95, pages 25–36, May 1995.Google Scholar
  36. 36.
    Y. Guo, S. Sen, and D. Towsley. Prefix caching assisted periodic broadcast: Framework and techniques to support streaming for popular videos. In Proc. of ICC’02, 2002.Google Scholar
  37. 37.
    D. Heyman and D. Lucantoni. Modeling multiple ip traffic with rate limits. In J.M. de Souza, N. da Fonseca, and E. de Souza e Silva, editors, Teletraffic Engineering in the Internet Era, pages 445–456. 2001.Google Scholar
  38. 38.
    D.P. Heyman and T.V. Lakshman. What are the Implications of Long-Range Dependence for VBR-Video Traffic Engineering. IEEE/ACM Transactions on Networking, 4(3):301–317, June 1996.CrossRefGoogle Scholar
  39. 39.
    Ailan Hu. Video-on-demand broadcasting protocols: A comprehensive study. In Proc. IEEE Infocom, pages 508–517, 2001.Google Scholar
  40. 40.
    K. A. Hua, Y. Cai, and S. Sheu. Patching: A multicast technique for true video-on demand services. In Proceedings of ACM Multimedia, pages 191–200, 1998.Google Scholar
  41. 41.
    K.A. Hua and S. Sheu. Skyscraper broadcasting: a new broadcasting scheme for metropolitan video-on-demand systems. In Proc. of ACM Sigcomm’97, pages 89–100. ACM Press, 1997.Google Scholar
  42. 42.
    J. Chien-Liang, D.H.C. Du, S.S.Y. Shim, J. Hsieh, and M. Lin. Design and evaluation of a generic software architecture for on-demand video servers. IEEE Transactions on Knowledge and Data Engineering, 11(3):406–424, May 1999.CrossRefGoogle Scholar
  43. 43.
    P. Ji, B. Liu, D. Towsley, and J. Kurose. Modeling frame-level errors in gsm wireless channels. In Proc. of IEEE/Globecom’02 Global Internet Symp., 2002.Google Scholar
  44. 44.
    S. Jin and A. Bestavros. Scalability of multicast delivery for non-sequential streaming access. In Proc. of ACM Sigmetrics’02, June 2002.Google Scholar
  45. 45.
    K. Keeton and R. Kantz. Evaluating video layout strategies for a high-performance storage server. In ACM Multimedia Conference, pages 43–52, 1995.Google Scholar
  46. 46.
    J. Korst. Random duplicated assignment: An alternative to striping in video servers. In ACM Multimedia Conference, pages 219–226. Seattle, 1997.Google Scholar
  47. 47.
    J.F. Kurose and K.W. Ross. Computer Networking: A Top-Down Approach Featuring the Internet. Addison-Wesley, 2001.Google Scholar
  48. 48.
    S.W. Lau, J.C.S. Lui, and L. Golubchik. Merging video streams in a multimedia storage server: Complexity and heuristics. ACM Multimedia Systems Journal, 6(1):29–42, January 1998.CrossRefGoogle Scholar
  49. 49.
    R.M.M. Leão, E. de Souza e Silva, and Sidney C. de Lucena. A set of tools for traffic modelling, analysis and experimentation. In Lecture Notes in Computer Science 1786 (TOOLS’00), pages 40–55, 2000.Google Scholar
  50. 50.
    Y. Mansour and B Patt-Shamir. Jitter control in QoS networks. IEEE/ACM Transactions on Networking, 2001.Google Scholar
  51. 51.
    A.P. Markopoulou, F.A. Tobagi, and M.J. Karam. Assessment of VoIP quality over Internet backbones. In Proc. of IEEE/Infocom’02, June 2002.Google Scholar
  52. 52.
    H. Michiel and K. Laevens. Traffic Engineering in a Broadband Era. Proceedings of the IEEE, pages 2007–2033, 1997.Google Scholar
  53. 53.
    R.R. Muntz, J.R. Santos, and S. Berson. A parallel disk storage system for real-time multimedia applications. Intl. Journal of Intelligent Systems, 13(12):1137–1174, December 1998.CrossRefGoogle Scholar
  54. 54.
    B. Ozden, R. Rastogi, and A. Silberschatz. Disk striping in video server environments. In IEEE Intl. Conference on Multimedia Computing and Systems, 1996.Google Scholar
  55. 55.
    B. Ozden, R. Rastogi, and A. Silberschatz. On the design of a low-cost video-ondemand storage system. In ACM Multimedia Conference, pages 40–54, 1996.Google Scholar
  56. 56.
    K. Park and W. Willinger. Self-Similar Network Traffic: an Overview, pages 1–38. John Wiley and Sons, INC., 2000.Google Scholar
  57. 57.
    C. S. Perkins, O. Hodson, and V. Hardman. A survey of packet-loss recovery techniques for streaming audio. IEEE Network Magazine, pages 40–48, Sep. 1998.Google Scholar
  58. 58.
    S. Ramesh, I. Rhee, and K. Guo. Multicast with cache (mcache): An adaptative zero-delay video-on-demand service. IEEE Transactions on Circuits and Systems for Video Technology, 11(3):440–456, March 2001.CrossRefGoogle Scholar
  59. 59.
    R. Rejaie, H. Yu, M. Handley, and D. Estrin. Multimedia proxy caching mechanism for quality adaptive streaming applications in the Internet. In Proc. IEEE Infocom, pages 980–989, 2000.Google Scholar
  60. 60.
    Reza Rejaie, Mark Handley, and Deborah Estrin. Quality adaptation for congestion controlled video playback over the Internet. In Proc. ACM Sigcomm’99, pages 189–200, August 1999.Google Scholar
  61. 61.
    K. Salamatian and S. Vaton. Hidden Markov Modeling for network communication channels. In Proc. of Sigmetrics/Performance’01, pages 92–101, Cambridge, Massachusetts, USA, June 2001.Google Scholar
  62. 62.
    J.D. Salehi, Z.L. Zhang, J.F. Kurose, and D. Towsley. Supporting stored video: reducing rate variability and end-to-end resource requirements through optimal smoothing. IEEE/ACM Transactions on Networking, 6(4):397–410, 1998.CrossRefGoogle Scholar
  63. 63.
    J.R. Santos and R. Muntz. Performance analysis of the RIO multimedia storage system with heterogeneous disk configurations. In ACM Multimedia Conf., 1998.Google Scholar
  64. 64.
    J.R. Santos, R. Muntz, and B. Ribeiro-Neto. Comparing random data allocation and data striping in multimedia servers. In Proc. ACM Sigmetrics’00, pages 44–55. Santa Clara, 2000.Google Scholar
  65. 65.
    S. Sen, J. Rexford, J. Dey, J. Kurose, and D. Towsley. Online smoothing of variablebit-rate streaming video. IEEE Transactions on Multimedia, 2000.Google Scholar
  66. 66.
    S. Sen, J. Rexford, and D. Towsley. Proxy prefix caching for multimedia streams. In Proc. IEEE Infocom, pages 1310–1319, 1999.Google Scholar
  67. 67.
    P.J. Shenoy and H.M. Vin. Efficient striping techniques for multimedia file servers. In Proc. NOSSDAV’97, pages 25–36. 1997.Google Scholar
  68. 68.
    H. Tan, D. Eager, M. Vernon, and H. Guo. Quality of service evaluations of multicast streaming protocols. In Proc. of ACM Sigmetrics 2002, June 2002.Google Scholar
  69. 69.
    D. Towsley, J. Kurose, and S. Pingali. A comparison of sender-initiated and receiver-initiated reliable multicast protocols. IEEE Journal on Selected Areas in Communications, 15(3):398–406, April 1997.CrossRefGoogle Scholar
  70. 70.
    S. Viswanathan and T. Imielinski. Pyramid broadcasting for video on demand service. In Proc. IEEE Multimedia Computing and Networking, volume 2417, pages 66–77, 1995.Google Scholar
  71. 71.
    B. Wang, S. Sen, M. Adler, and D. Towsley. Optimal proxy cache allocation for efficient streaming media distribution. In Proc. IEEE Infocom, 2002.Google Scholar
  72. 72.
    Y. Wang, Z. Zhang, D. Du, and D. Su. A network-conscious approach to end-toend video delivery over wide area networks using proxy servers. In Proc. of IEEE Infocom 98, pages 660–667, Abril 1998.Google Scholar
  73. 73.
    W.R. Wong. On-time Data Delivery for Interactive Visualization Apploications. PhDthesis, UCLA/CS Dept., 2000.Google Scholar
  74. 74.
    D. Wu, Y.T. Hou, and Y. Zhang. Transporting real-time video over the Internet: Challenges and approaches. Proceedings of the IEEE, 88(12):1855–1875, December 2000.Google Scholar
  75. 75.
    M. Yajnik, S. Mon, J. Kurose, and D. Towsley. Measurement and modeling of the temporal dependence in packet loss. In Proc. of IEEE/Infocom’99, 1999.Google Scholar
  76. 76.
    E. Steinbach Yi J. Liang and B. Girod. Real-time voice communication over the Internet using packet path diversity. In Proc. ACM Multimedia 2001, Ottawa, Canada, Sept./Oct. 2001.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Edmundo de Souza e Silva
    • 1
  • Rosa M. M. Leão
    • 1
  • Berthier Ribeiro-Neto
    • 2
  • Sérgio Campos
    • 2
  1. 1.Computer Science DepartmentFederal University of Rio de Janeiro COPPE/PESCBrazil
  2. 2.Computer Science DepartmentFederal University of Minas GeraisBrazil

Personalised recommendations