Skip to main content

Thermodiffusion of Polymer Solutions in Convectionless Cells

  • Chapter
  • First Online:
Thermal Nonequilibrium Phenomena in Fluid Mixtures

Part of the book series: Lecture Notes in Physics ((LNP,volume 584))

Abstract

This contribution reviews the study of polymer thermodiffusion in convectionless cells. First, the development of thermodiffusion theory is summarized. Next, the apparent independence of thermodiffusion and degree of polymerization in polymers is discussed. Thermodiffusion coefficients (D T) measured by thermal field-flow fractionation on several polymer-solvent mixtures are then summarized. Polymers include a variety of different molecular weight samples of polystyrene, poly(á-methyl styrene), polyisoprene, and polymethylmethacrylate, as well as copolymers of styrene and isoprene. Solvents include benzene, toluene, ethylbenzene, tetrahydrofuran, 2-butanone, ethyl acetate, and cyclohexane. Measured values of D T do not correlate with predictive models of thermodiffusion, but are found to correlate with polymer density and solvent viscosity. Finally, using a hydrodynamic model of polymer thermodiffusion in nonpolar solvents, an expression is derived that expresses D T in terms of physicochemical parameters that can be estimated or measured independently. These parameters include the thermal expansion coefficient, molar volume and viscosity of the solvent, the radius of a polymer repeat unit, and the Hamaker constants. The model predicts general trends in the thermodiffusion of polymethylmethacrylate and polystyrene in solvents where such parameters are available, but overestimates the values of D T by a factor of 2–4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. E. Schimpf: ‘Thermal Field-Flow Fractionation’. In: Field-Flow Fractionation Handbook, ed. by M. E. Schimpf, K. D. Caldwell, J. C. Giddings (Wiley, New York 2000) pp. 239–256

    Google Scholar 

  2. D. Enskog: Physik Z. 12, 533 (1911)

    Google Scholar 

  3. S. Chapman: Proc. Roy. Soc. Lond. A93, 1 (1916)

    Article  ADS  Google Scholar 

  4. K. Wirtz: Naturwissenschaften 27, 369 (1939)

    Article  ADS  MATH  Google Scholar 

  5. K. Wirtz, J. W. Hiby: Z. Physik 44, 369 (1943)

    Google Scholar 

  6. I. Prigogine, L. de Broukere, R. Amand: Physica 16, 851 (1950)

    Article  ADS  Google Scholar 

  7. S. Prager, H. Eyring: J. Chem. Phys. 21, 1347 (1953)

    Article  ADS  Google Scholar 

  8. S. R. de Groot: The Thermodynamics of Irreversible Processes (Interscience, New York, 1950)

    Google Scholar 

  9. K. G. Denbigh: Trans. Faraday Soc. 48, 1 (1952)

    Article  Google Scholar 

  10. R. J. Bearman, J. G. Kirkwood, M. Fixman: Advanc. Chem. Phys. 1, 1 (1958)

    Article  MathSciNet  Google Scholar 

  11. W. M. Rutherford, H. G. Drickamer: J. Chem. Phys. 22, 1157 (1954)

    Article  ADS  Google Scholar 

  12. E. L. Doughergy, H. G. Drickamer: J. Phys. Chem. 59, 443 (1955)

    Article  Google Scholar 

  13. A. H. Emery, H. G. Drickamer: J. Chem. Phys. 23, 2252 (1955)

    Article  ADS  Google Scholar 

  14. T. N. Khazanovich: J. Polym. Sci. Part C 16, 2463 (1967)

    Google Scholar 

  15. P. Debye, A. M. Bueche: High Polymer Physics (Chemical Publishing, New York, 1948) pp. 497–527

    Google Scholar 

  16. F. S. Gaeta: Phs. Rev. 182, 289 (1969)

    Article  ADS  Google Scholar 

  17. J. C. Giddings, ‘The Field-Flow Fractionation Family: Underlying Principles. In: M. E. Schimpf, K. D. Caldwell, and J. C. Giddings, Eds., Field-Flow Fractionation Handbook (Wiley, New York, 2000) pp. 3–30.

    Google Scholar 

  18. M. Martin, C. Van Batten, M. Hoyos: Anal. Chem. 69, 1339 (1997)

    Article  Google Scholar 

  19. A. C. van Asten, G. F. M. Boelens, W. Th. Kok, P. S. Williams, J. C. Giddings: Sep. Sci. Technol. 29, 513 (1994)

    Article  Google Scholar 

  20. M. E. Schimpf, J. C. Giddings: Macromol. 20, 1561 (1987)

    Article  ADS  Google Scholar 

  21. M. E. Schimpf, J. C. Giddings: J. Polym. Sci., Polym. Phys. Ed. 17, 1317 (1989)

    Google Scholar 

  22. R. Sisson, J. C. Giddings: Anal. Chem. 66, 4043 (1994)

    Article  Google Scholar 

  23. A. C. van Asten, W. Th. Kok, R. Tijssen, H. Poppe: J. Polym. Sci. B: Polym. Phys. 34, 283 (1996)

    Article  ADS  Google Scholar 

  24. C. A. Rue, M. E. Schimpf: Anal. Chem. 66, 4054 (1994)

    Article  Google Scholar 

  25. G. Thomaes: Physica 17, 885 (1951)

    Article  ADS  Google Scholar 

  26. J. Xu, C. A. Rue, M. E. Schimpf: J. Liq. Chrom. & Rel. Technol. 20, 2703 (1997)

    Article  Google Scholar 

  27. M. E. Schimpf, J. C. Giddings: J. Polym. Sci., Polym. Phys. Ed. 28, 2673 (1990)

    Article  ADS  Google Scholar 

  28. M. E. Schimpf, L. M. Wheeler, P. F. Romeo: ACS Symp. Ser. 521, 63 (1992)

    Article  Google Scholar 

  29. S. L. Brimhall, M. N. Myers, K. D. Caldwell, J. C. Giddings: J. Polym. Sci., Polym. Phys. 23, 2443 (1985)

    Article  ADS  Google Scholar 

  30. J. M. Prausnitz, Moleclar Thermodynamics of Fluid Phase Equilibria. (Prentice-Hall, Englewood Cliffs, 1969)

    Google Scholar 

  31. J. Brandrup, E. H. Immergut, ed.: Polymer Handbook (Wiley, New York, 1989)

    Google Scholar 

  32. F. S. Gaeta, G. Perna, G. Scala: J. Poly. Sci. Polym. Phys. Ed. 13, 203 (1975)

    Article  ADS  Google Scholar 

  33. M. E. Schimpf, S. M. Semenov: J. Phys. Chem. B 104, 9935 (2000)

    Article  Google Scholar 

  34. S. Ross, I. D. Morrison: Colloidal Systems and Interfaces. (Wiley, New York, 1988)

    Google Scholar 

  35. M. Teubner: J. Chem. Phys. 76, 5564 (1982)

    Article  ADS  Google Scholar 

  36. J. A. Riddik, W. B. Bunger, T. K. Sakano, eds.: Organic Solvents. Physical Properties and Methods of Purification (Wiley, New York, 1986)

    Google Scholar 

  37. K. S. Birdi, ed.: Handbook of Surface and Colloid Chemistry (CRC Press, New York, 1997)

    Google Scholar 

  38. J. van Oss: Interfacial Forces in Aqueous Media (Dekker, New York, 1994)

    Google Scholar 

  39. E. M. Lifshitz: Zh. Teor. Fiz. 29, 94 (1955)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schimpf, M.E. (2002). Thermodiffusion of Polymer Solutions in Convectionless Cells. In: Köhler, W., Wiegand, S. (eds) Thermal Nonequilibrium Phenomena in Fluid Mixtures. Lecture Notes in Physics, vol 584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45791-7_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-45791-7_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43231-9

  • Online ISBN: 978-3-540-45791-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics