Skip to main content

Relations between Soft Wavelet Shrinkage and Total Variation Denoising

  • Conference paper
  • First Online:
Pattern Recognition (DAGM 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2449))

Included in the following conference series:

Abstract

Soft wavelet shrinkage and total variation (TV) denoising are two frequently used techniques for denoising signals and images, while preserving their discontinuities. In this paper we show that — under specific circumstances — both methods are equivalent. First we prove that 1-D Haar wavelet shrinkage on a single scale is equivalent to a single step of TV diffusion or regularisation of two-pixel pairs. Afterwards we show that wavelet shrinkage on multiple scales can be regarded as a single step diffusion filtering or regularisation of the Laplacian pyramid of the signal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Andreu, V. Caselles, J. I. Diaz, and J. M. Mazón. Qualitative properties of the total variation flow. Journal of Functional Analysis, 2002. To appear.

    Google Scholar 

  2. G. Bellettini, V. Caselles, and M. Novaga. The total variation flow in R N. Journal of Differential Equations, 2002. To appear.

    Google Scholar 

  3. P. J. Burt and E. H. Adelson. The Laplacian pyramid as a compact image code. IEEE Transactions on Communications, 31:532–540, 1983.

    Article  Google Scholar 

  4. A. Chambolle, R. A. DeVore, N. Lee, and B. L. Lucier. Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage. IEEE Transactions on Image Processing, 7(3):319–335, Mar. 1998.

    Article  MATH  MathSciNet  Google Scholar 

  5. T. F. Chan and H. M. Zhou. Total variation improved wavelet thresholding in image compression. In Proc. Seventh International Conference on Image Processing, Vancouver, Canada, Sept. 2000.

    Google Scholar 

  6. D. Donoho. De-noising by soft thresholding. IEEE Transactions on Information Theory, 41:613–627, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  7. S. Durand and J. Froment. Reconstruction of wavelet coefficients using total-variation minimization. Technical Report 2001-18, Centre de Mathématiques et de Leurs Applications, ENS de Cachan, France, 2001.

    Google Scholar 

  8. F. Malgouyres. Combining total variation and wavelet packet approaches for image deblurring. In Proc. First IEEE Workshop on Variational and Level Set Methods in Computer Vision, pages 57–64, Vancouver, Canada, July 2001. IEEE Computer Society Press.

    Google Scholar 

  9. S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, San Diego, 1998.

    MATH  Google Scholar 

  10. P. Perona and J. Malik. Scale space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12:629–639, 1990.

    Article  Google Scholar 

  11. L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica D, 60:259–268, 1992.

    Article  MATH  Google Scholar 

  12. O. Scherzer and J. Weickert. Relations between regularization and diffusion filtering. Journal of Mathematical Imaging and Vision, 12(1):43–63, Feb. 2000.

    Article  MATH  MathSciNet  Google Scholar 

  13. G. Strang and T. Nguyen. Wavelets and Filter Banks. Wellesley-Cambridge Press, Wellesley, 1996.

    Google Scholar 

  14. J. Weickert. Anisotropic Diffusion in Image Processing. Teubner, Stuttgart, 1998.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Steidl, G., Weickert, J. (2002). Relations between Soft Wavelet Shrinkage and Total Variation Denoising. In: Van Gool, L. (eds) Pattern Recognition. DAGM 2002. Lecture Notes in Computer Science, vol 2449. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45783-6_25

Download citation

  • DOI: https://doi.org/10.1007/3-540-45783-6_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44209-7

  • Online ISBN: 978-3-540-45783-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics