Spatial Order in Liquid Crystals: Computer Simulations of Systems of Ellipsoids

  • Friederike Schmid
  • Nguyen H. Phuong
Part of the Lecture Notes in Physics book series (LNP, volume 600)


Computer simulations of simple model systems for liquid crystals are briefly reviewed, with special emphasis on systems of ellipsoids. First, we give an overview over some of the most commonly studied systems (ellipsoids, Gay-Berne particles, spherocylinders). Then we discuss the structure of the nematic phase in the bulk and at interfaces.


Liquid Crystal Phase Behavior Nematic Liquid Crystal Nematic Phase Smectic Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    De Gennes P. G. (1995): The Physics of Liquid Crystals. (Oxford University Press, Oxford)Google Scholar
  2. 2.
    Chandrasekhar, S. (1992): Liquid Crystals. (Cambridge University Press, Cambridge)Google Scholar
  3. 3.
    Onsager L. (1949): ‘The effects of shape on the interaction of colloidal particles’. Ann. N.Y. Acad. Sci. 51, pp. 627–659.CrossRefADSGoogle Scholar
  4. 4.
    Maier W., A. Saupe (1958): ‘Eine einfache molekulare Theorie des nematischen kristallinflüssigen Zustandes’. Z. Naturforschung A13, 564–566.ADSGoogle Scholar
  5. 5.
    Allen M. P. (1995): ‘Simulations and phase behaviour of liquid crystals’. In: Observation, Prediction and Simulation of Phase Transitions in Complex Fluids, ed. by M. Baus et al (Kluwer Academic Publ., Dordrecht), pp. 557–590.Google Scholar
  6. 6.
    Pasini P., C. Zannoni eds. (1998): Advances in the Computer Simulations of Liquid Crystals. (Kluwer Academic Publ., Dordrecht)Google Scholar
  7. 7.
    Crain J., A. V. Komolkin (1999): ‘Simulating molecular properties of liquid crystals’. Adv. Chem. Phys. 109, 39–113.CrossRefGoogle Scholar
  8. 8.
    Singh S. (2000): ‘Phase transitions in liquid crystals’. Phys. Rep. 324, 108–269.ADSCrossRefGoogle Scholar
  9. 9.
    Frenkel D., B. M. Mulder (1985): ‘The hard ellipsoid-of-revolution fluid. I. Monte Carlo simulations’. Molecular Physics 55, 1171–92.CrossRefADSGoogle Scholar
  10. 10.
    Allen M. P., M. R. Wilson (1989): ‘Computer simulation of liquid crystals’. Journal of Computer Aided Molecular Design 3, 335–353.CrossRefADSGoogle Scholar
  11. 11.
    Allen M. P., G. T. Evans, D. Frenkel, B. Mulder (1993): ‘Hard convex body fluids’. Adv. Chem. Phys. 86, 1–166.CrossRefGoogle Scholar
  12. 12.
    Samborski A., G. T. Evans, C. P. Mason, M. P. Allen (1994): ‘The isotropic to nematic liquid crystal transition for hard ellipsoids: An Onsager-like theory and computer simulations’. Molecular Physics 81, 263–76.CrossRefADSGoogle Scholar
  13. 13.
    Allen M. P., C. P. Mason (1995): ‘Stability of the nematic phase for the hard ellipsoid fluid’ Molecular Physics 86, 467–74.CrossRefADSGoogle Scholar
  14. 14.
    Camp. P. J., C. P. Mason, M. P. Allen, A. A. Khare, D. A. Kofke (1996): ‘The isotropicnematic phase transition in uniaxial hard ellipsoid fluids: Coexistence data and the approach to the Onsager limit’. J. Chem. Phys. 105, 2837–2949.ADSCrossRefGoogle Scholar
  15. 15.
    Frenkel D., A. J. C. Ladd (1984). ‘New Monte Carlo method to compute the free energy of arbitrary solids. Application to the FCC and HCP phases of hard spheres’. J. Chem. Phys. 81, 3188–93.ADSCrossRefGoogle Scholar
  16. 16.
    Vieillard-Baron J. (1972): ‘Phase transitions of the classical hard-ellipse system’. J. Chem. Phys. 56, 4729–4744.CrossRefADSGoogle Scholar
  17. 17.
    Perram J. W., M. S. Wertheim, J. L. Lebowitz, G. O. Williams (1984): ‘Monte Carlo simulation of hard spheroids’. Chem. Phys. Lett. 105, 277–280.ADSCrossRefGoogle Scholar
  18. 18.
    Perram J. W., M. S. Wertheim (1985): ‘Statistical mechanics of hard ellipsoids. I. Overlap algorithm and the contact function’. J. Comp. Phys. 58, 409–416.zbMATHCrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Berne J. B., P. Pechukas (1971): ‘Gaussian model potentials for molecular interactions’. J. Chem. Phys. 56, 4213–4216.CrossRefADSGoogle Scholar
  20. 20.
    Rigby M. (1989): ‘Hard gaussian overlap fluids’. Mol. Phys. 68, 687–697.CrossRefADSGoogle Scholar
  21. 21.
    Padilla P., E. Velasco (1997): ‘The isotropic-nematic transition for the hard Gaussian overlap fluid: Testing the decoupling approximation’. J. Chem. Phys. 106, 10299–10310.ADSCrossRefGoogle Scholar
  22. 22.
    Velasco E., P. Padilla (1998): ‘Nematic virial coefficients of very long hard molecules and Onsager theory’. Mol. Phys. 94, 335–339.CrossRefADSGoogle Scholar
  23. 23.
    Huang S. L., V. R. Bhethanabotla (1999): ‘Virial coefficients for the Hard Gaussian Overlap model’. Int. J. Mod. Phys. C 10, 361–374 (1999).ADSCrossRefGoogle Scholar
  24. 24.
    Cleaver D. J., P. I. C. Teixeira (2001): ‘Discontinuous structural transition in a thin hybrid liquid crystal film’. Chem. Phys. Lett. 338, 1–6.CrossRefADSGoogle Scholar
  25. 25.
    Chrzanowska A., P. I. C. Teixeira, H. Ehrentraut, D. J. Cleaver (2001): ‘Ordering of hard particles between hard walls’. J. Phys.-Cond. Matt. 13, 4715–4726 (2001).ADSCrossRefGoogle Scholar
  26. 26.
    Gay J. G, B. J. Berne (1980): ‘Modification of the overlap potential to mimic a linear site-site potential’. J. Chem. Phys. 74, 3316–3319.ADSCrossRefGoogle Scholar
  27. 27.
    Adams D. J., G. R. Luckhurst, R. W. Phippen (1987): ‘Computer simulation studies of anisotropic systems. XVII. The Gay-Berne modelnematogen’. Mol. Phys. 61 1575–1580.CrossRefADSGoogle Scholar
  28. 28.
    De Miguel E., L. F. Rull, M. K. Chalam, K. E. Gubbins, F. Van Swol (1991): ‘Location of the isotropic-nematic transition in the Gay-Berne model’. Mol. Phys. 72 593–605.CrossRefADSGoogle Scholar
  29. 29.
    de Miguel E., L. F. Rull, M.K. Chalam, K. E. Gubbins (1991): ‘Liquid crystal phase diagram of the Gay-Berne fluid’. Mol. Phys. 74, 405–424.CrossRefADSGoogle Scholar
  30. 30.
    Emsley J. W., G. R. Luckhurst, W. E. Palke, D. J. Tildesley (1992): ‘Computer simulation studies of the dependence on density of the orientational order in nematic liquid crystals’. Liquid Crystals 11, 519–530.CrossRefGoogle Scholar
  31. 31.
    de Miguel E., E. Martin del Rio, J. T. Brown, M. P. Allen (1996): ‘Effect of the attractive interactions on the phase behavior of the Gay-Berne liquid crystal model’. J. Chem. Phys. 105, 4234–4249.ADSCrossRefGoogle Scholar
  32. 32.
    Brown J. T., M. P. Allen, E. Martin del Rio, E. de Miguel (1997): ‘Effects of elongation on the phase behavior of the Gay-Berne fluid’. Phys. Rev. E 57, 6685–6699.ADSCrossRefGoogle Scholar
  33. 33.
    Luckhurst G. R., R. A. Stephens, R. W. Phippen (1990): ‘Computer simulation studies of anisotropic systems. XIX. Mesophases formed by the Gay-Berne modelmesogen’. Liquid Crystals 8, 451–464.CrossRefGoogle Scholar
  34. 34.
    Berardi R., A. P. J. Emerson, C. Zannoni (1993): ‘Monte-Carlo investigations of a Gay-Berne liquid crystal’. J. Chem. Soc. Faraday T. 89, 4069–4078.CrossRefGoogle Scholar
  35. 35.
    Luckhurst G. R., P. S. J. Simmonds (1993): ‘Computer simulation studies of anisotropic systems. XXI. Parametrization of the Gay-Berne potentialfor modelmesogens’. Mol. Phys. 80, 233–252.CrossRefADSGoogle Scholar
  36. 36.
    Bates M. A., G. R. Luckhust (1999): ‘Computer simulation studies of anisotropic systems. XXX. The phase behavior and structure of a Gay-Berne mesogen’. J. Chem. Phys. 110, 7087–7108.ADSCrossRefGoogle Scholar
  37. 37.
    Vieillard-Baron J. (1974): ‘The equation of state of a system of hard spherocylinders’. Mol. Phys. 28, 809–818.CrossRefADSGoogle Scholar
  38. 38.
    Zasadzinski J. A. N., M. J. Sammon, R. B. Meyer, M. Cahoon, D. L. D. Caspar (1986): ‘Freeze-fracture imaging of ordered phases of tobacco mosaic virus in water’. Mol. Cryst. Liqu. Cryst. 138, 211–229.CrossRefGoogle Scholar
  39. 39.
    Zasadzinski J. A. N., R. B. Meyer (1986): ‘Molecular imaging of tobacco mosaic virus lyotropic nematic phases’. Phys. Rev. Lett. 56, 636–6388.ADSCrossRefGoogle Scholar
  40. 40.
    Oldenbourg R., X. Wen, R. B. Meyer, D. L. D. Caspar (1988): ‘Orientational distribution function in nematic tobacco-mosaic-virus liquid crystals measured by X-ray diffraction’. Phys. Rev. Lett. 61, 1851–1854.ADSCrossRefGoogle Scholar
  41. 41.
    Dogic Z., S. Fraden (1997): ‘Smectic phase in a colloidal suspension of semiflexible virus particles’. Phys. Rev. Lett. 78, 2417–2420.ADSCrossRefGoogle Scholar
  42. 42.
    Frenkel D. (1987): ‘Onsager’s spherocylinders revisited’. J. Phys. Chem. 91, 4912–4916.CrossRefGoogle Scholar
  43. 43.
    Frenkel D., H. N. W. Lekkerkerker, A. Stroobants (1988): ‘Thermodynamic stability of a smectic phase in a system of hard rods’. Nature 332, 822–823.ADSCrossRefGoogle Scholar
  44. 44.
    Veerman J. A. C., D. Frenkel (1990): ‘Phase diagram of a system of hard spherocylinders by computer simulation’. Phys. Rev. E 41, 3237–3244.ADSGoogle Scholar
  45. 45.
    McGrother S. C., D. C. Williamson, G. Jackson (1996): ‘A re-examination of the phase diagram of hard spherocylinders’. J. Chem. Phys. 104, 6755–6771.ADSCrossRefGoogle Scholar
  46. 46.
    Bolhuis P., D. Frenkel (1996): ‘Tracing the phase boundaries of hard spherocylinders’, J. Chem. Phys. 106, 666–687.ADSCrossRefGoogle Scholar
  47. 47.
    Polson J. M., D. Frenkel (1997): ‘First-order nematic-smectic phase transition for hard spherocylinders in the limit of infinite aspect ratio’. Phys. Rev. E 56, R6260–R6263.ADSCrossRefGoogle Scholar
  48. 48.
    Poniewierski A., R. Holyst (1988): ‘Density-functional theory for nematic and smectic-A ordering of hard spherocylinders’. Phys. Rev. Lett. 61, 2461–2464.ADSCrossRefGoogle Scholar
  49. 49.
    Somoza A. M., P. Tarazona (1990): ‘Nematic and smectic liquid crystals of hard spherocylinders’. Phys. Rev. E 41, 965–970.ADSGoogle Scholar
  50. 50.
    Poniewierski A., T. J. Sluckin TJ (1991): ‘Phase diagram for a system of hard spherocylinders’. Phys. Rev. E 43, 6837–6842.ADSGoogle Scholar
  51. 51.
    Graf H., H. Löwen (1999): ‘Density functionaltheory for hard spherocylinders: phase transitions in the bulk and in the presence of external fields’. J. Phys.: Cond. Matt. 11, 1435–1452.ADSCrossRefGoogle Scholar
  52. 52.
    Velasco E., L. Mederos, D. E. Sullivan (2000): ‘Density-functional theory of inhomogeneous systems of hard spherocylinders’. Phys. Rev. D 62, 3708–3718.ADSGoogle Scholar
  53. 53.
    Bolhuis P. G., A. Stroobants, D. Frenkel, H. N. W. Lekkerkerker (1997): ‘Numerical study of the phase behavior of rodlike colloids with attractive interactions’. J. Chem. Phys. 107, 1551–1564.ADSCrossRefGoogle Scholar
  54. 54.
    Williamson D. C., F. del Rio (1998): ‘The isotropic-nematic phase transition in a fluid of square well spherocylinders’. J. Chem. Phys. 109, 4675–4686.ADSCrossRefGoogle Scholar
  55. 55.
    Bates M. A., D. Frenkel (1998): ‘Influence of polydispersity on the phase behavior of colloidal liquid crystals: A Monte Carlo simulation study’. J. Chem. Phys. 109, 6193–6198.ADSCrossRefGoogle Scholar
  56. 56.
    Wilson M. R. (1994): ‘Molecular dynamics simulation of semiflexible mesogens’. Mol. Phys. 81, 675–690.CrossRefADSGoogle Scholar
  57. 57.
    Levesque D., M. Mazars, J. J. Weis (1995): ‘Monte Carlo study of the thermodynamic stability of the nematic phase of a semiflexible liquid crystal model’. J. Chem. Phys. 103, 3820–3831.ADSCrossRefGoogle Scholar
  58. 58.
    Mazars M., D. Levesque, J. J. Weis (1997): ‘Monte Carlo study of a semiflexible liquid crystal model: The smectic phase’. J. Chem. Phys. 106, 6107–6115.ADSCrossRefGoogle Scholar
  59. 59.
    Affouard F., M. Kröger, S. Hess (1996): ‘Molecular dynamics of model liquid crystals composed of semiflexible molecules’. Phys. Rev. E 54, 5178–5186.ADSCrossRefGoogle Scholar
  60. 60.
    Williamson D. C., G. Jackson (1998): ‘Liquid crystalline phase behavior in systems of hard-sphere chains’. J. Chem. Phys. 108, 10294–10302.ADSCrossRefGoogle Scholar
  61. 61.
    Faller R., A. Kolb, F. Müller-Plathe (1999): ‘Local chain ordering in amorphous polymer melts: influence of chain stiffness’. PCCP Phys. Chem. Chem. Phys. 1, 2071–2076.Google Scholar
  62. 62.
    Weber H., W. Paul, K. Binder (1999): ‘Monte Carlo simulation of a lyotropic first-order isotropic-nematic phase transition in a lattice polymer model’. Phys. Rev. E 59, 2168–2174.ADSCrossRefGoogle Scholar
  63. 63.
    McBride C., C. Vega, L. G. MacDowell (2001): ‘Isotropic-nematic phase transition: Influence of intramolecular flexibility using a fused hard sphere model’. Phys. Rev. E 64, 11703–11718.ADSCrossRefGoogle Scholar
  64. 64.
    Veerman J. A. C., D. Frenkel (1992): ‘Phase behavior of disklike hard-core mesogens’. Phys. Rev. E 45, 5632–5648.ADSGoogle Scholar
  65. 65.
    Bates M. A., G. R. Luckhurst (1996): ‘Computer simulation studies of anisotropic systems. XXVI Monte Carlo investigations of a Gay-Berne discotic at constant pressure’. J. Chem. Phys. 104, 6696–6709.ADSCrossRefGoogle Scholar
  66. 66.
    De Luca M. D., M. K. Griffiths, C. M. Care, M. P. Neal (1994): ‘Computer modelling of discotic liquid crystals’. Intnl. J. Electr. 77, 907–917.CrossRefGoogle Scholar
  67. 67.
    Emerson A. P. J., G. R. Luckhurst, S. G. Whatling (1994): ‘Computer simulation studies of anisotropic systems. XXIII. The Gay-Berne discogen’. Mol. Phys. 82, 113–124.CrossRefADSGoogle Scholar
  68. 68.
    Zewdie H. (1998): ‘Computer-simulation studies of diskotic liquid crystals’. Phys. Rev. E 57, 1793–1805.ADSCrossRefGoogle Scholar
  69. 69.
    Bates M. A., D. Frenkel (1998): ‘Infinitely thin disks exhibit a first order nematic-columnar phase transition’. Phys. Rev. E 57, 4824–4826.ADSCrossRefGoogle Scholar
  70. 70.
    Landau L. D., E. M. Lifschitz (1969): Course of theoretical physics, Vol.5 Statistical physics. (Pergamon Press Ltd. Oxford)Google Scholar
  71. 71.
    J. Goldstone J. (1961): ‘Field theories with’ superconductor’ solutions’. Nuovo Cimento 19, 154–164.zbMATHCrossRefMathSciNetGoogle Scholar
  72. 72.
    Goldstone J., A. Salam, S. Weinberg (1962). ‘Broken Symmetries’. Phys. Rev. 127, 965–970.zbMATHADSCrossRefMathSciNetGoogle Scholar
  73. 73.
    Forster D. (1975): Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions. Vol. 47 of Frontiers in Physics (Benjamin, Reading, MA)Google Scholar
  74. 74.
    Chaikin, P. M., Lubensky, T. C. (1995): Principles of condensed matter physics. (Cambridge University Press, Cambridge)Google Scholar
  75. 75.
    Oseen, C. (1933): ‘The theory of liquid crystals’. Trans. Faraday Soc. 29, 883–899.CrossRefGoogle Scholar
  76. 76.
    Zöcher, H. (1933). Trans. Faraday Soc. 29, 945.CrossRefGoogle Scholar
  77. 77.
    Frank, F. C. (1958): ‘On the theory of liquid crystals’. Discuss. Faraday Soc. 25, 19–29.CrossRefGoogle Scholar
  78. 78.
    Hansen, J. P., I. R. McDonald (1986): Theory of Simple Liquids. (Academic Press, London, 1986).Google Scholar
  79. 79.
    Gray C. G., K. E. Gubbins (1984): Theory of Molecular Fluids, Vol. 1. (Oxford University Press, New York)Google Scholar
  80. 80.
    Penttinen A. K., D. Stoyan (1989): ‘Statistical analysis for a class of line segment processes’. Scand. J. Statist 16, 153–168.zbMATHMathSciNetGoogle Scholar
  81. 81.
    Phuong N. H., G. Germano, F. Schmid (2001): ‘Elastic constants from direct correlation functions in nematic liquid crystals: A computer simulation study’. J. Chem. Phys. 115, 7227–7234.ADSCrossRefGoogle Scholar
  82. 82.
    Allen M. P., M. A. Warren, M. R. Wilson, A. Sauron, W. Smith (1997): ‘Molecular dynamics calculation of elastic constants in Gay-Berne nematic liquid crystals’. J. Chem. Phys. 105, 2850–2858.ADSCrossRefGoogle Scholar
  83. 83.
    Phuong N. H., G. Germano, F. Schmid (2001): ‘The direct correlation function in nematic liquid crystals from computer simulation’. Comp. Phys. Comm., in print.Google Scholar
  84. 84.
    Phuong N. N., F. Schmid (2001): ‘Liquid structure of nematic and isotropic liquid crystals’. in preparation.Google Scholar
  85. 85.
    Allen M. P., C. P. Mason, E. de Miguel, J. Stelzer (1995): ‘Structure of molecular liquids’. Phys. Rev. E 52, R25–R52.ADSCrossRefGoogle Scholar
  86. 86.
    Allen M. P., J. T. Brown, M. A. Warren (1996): ‘Computer simulation of liquid crystals’. J. Phys.: Cond. Matt. 8, 9433–9437.ADSCrossRefGoogle Scholar
  87. 87.
    Stelzer J., L. Longa, H. R. Trebin (1995): ‘Molecular dynamics simulations of a Gay-Berne nematic liquid crystal — elastic properties from direct correlation functions.’ J. Chem. Phys. 103, 3098–3107.ADSCrossRefGoogle Scholar
  88. 88.
    Stelzer J., L. Longa, H. R. Trebin (1995): ‘Elastic constants of nematic liquid crystals from molecular dynamics simulations’. Mol. Crys. Liqu. Crys. A 262, 455–461.CrossRefGoogle Scholar
  89. 89.
    Poniewierski A., J. Stecki (1979): ‘Statisticaltheory of the elastic constants of nematic liquid crystals’. Mol. Phys. 38, 1931–1940.CrossRefADSGoogle Scholar
  90. 90.
    Poniewierski A., J. Stecki (1982): ‘Statisticaltheory of the Frank elastic constants’. Phys. Rev. A 25, 2368–2370.ADSCrossRefGoogle Scholar
  91. 91.
    Bahadur B. (edt.) (1990): Liquid crystals and uses (World Scientific, Singapore)Google Scholar
  92. 92.
    Schadt M. (1997): ‘Liquid crystal materials and liquid crystal displays’. Ann. Rev. Mater. Science, 27, 305–379.CrossRefADSGoogle Scholar
  93. 93.
    Stelzer J., P. Galatola, G. Barbero G, L. Longa (1997): ‘Surface-induced order parameter profiles in a nematic liquid crystal from molecular dynamics simulations’. Mol. Cryst. Liqu. Cryst. A 229, 61–64.CrossRefGoogle Scholar
  94. 94.
    Stelzer J., P. Galatola, G. Barbero, L. Longa (1997): ‘Molecular dynamics simulations of surface-induced ordering in a nematic liquid crystal’. Phys. Rev. E 55, 477–480.ADSCrossRefGoogle Scholar
  95. 95.
    Stelzer J., L. Longa L, H. R. Trebin (1997): ‘Homeotropic surface anchoring of a Gay-Berne nematic liquid crystal’. Phys. Rev. E 55, 7085–7089.ADSCrossRefGoogle Scholar
  96. 96.
    Palermo V., F. Biscarini, C. Zannoni (1998): ‘Abrupt orientational changes for liquid crystals adsorbed on a graphite surface’. Phys. Rev. E 57, R2519–R2522.ADSCrossRefGoogle Scholar
  97. 97.
    Miyazaki T., K. Shigematsu, M. Yamashita (1998): ‘Surface-stabilized smectic A phase in the Gay-Berne model’. J. Phys. Soc. Jpn 67, 3477–3487.ADSCrossRefGoogle Scholar
  98. 98.
    Miyazaki T., H. Hayashi, M. Yamashita (1999): ‘Surface-induced spatial ordering in nematic and smectic phases of Gay-Berne model’. Mol. Cryst. Liqu. Crys. A 330, 1611–1618.Google Scholar
  99. 99.
    del Rio E. M., E. deMiguel (1997): ‘Computer simulation study of the free surfaces of a liquid crystal model’. Phys. Rev. E 55, 2916–2924.ADSCrossRefGoogle Scholar
  100. 100.
    De Miguel E., E. M. DelRio (1999): ‘Simulation of nematic free surfaces’. Int. J. Mod. Phys. C 10, 431–433.ADSCrossRefGoogle Scholar
  101. 101.
    Doerr T. P., P. L. Taylor (1999): ‘Molecular dynamics simulations of liquid crystal anchoring at an amorphous polymer surface’. Int. J. Mod. Phys. C 10, 415–429.ADSCrossRefGoogle Scholar
  102. 102.
    Doerr T. P., P. L. Taylor (1999): ‘Simulation of liquid crystal anchoring at an amorphous polymer surface from various initial configurations’. Mol. Cryst. Liqu. Cryst. A 330, 1735–1740 (1999).Google Scholar
  103. 103.
    Emerson A. P. J., S. Faetti, C. Zannoni (1997): ‘Monte Carlo simulation of the nematicvapour interface for a Gay-Berne liquid crystal’. Chem. Phys. Lett. 271, 241–246.CrossRefADSGoogle Scholar
  104. 104.
    Binger D. R., S. Hanna S (1999): ‘Computer simulation of interactions between liquid crystal molecules and polymer surfaces-I. Alignment of nematic and smectic A phases’. Liqu. Cryst. 26, 12050–1224.Google Scholar
  105. 105.
    Xu J. L., R. L. B. Selinger, J. V. Selinger, R. Shashidar (2001): ‘Monte Carlo simulation of liquid-crystal alignment and chiral symmetry-breaking’. J. Chem. Phys. 115, 4333–4338.ADSCrossRefGoogle Scholar
  106. 106.
    Allen M. P. (1999): ‘Molecular simulation and theory of liquid crystal surface anchoring’. Mol. Phys. 96, 1391–1397.CrossRefADSGoogle Scholar
  107. 107.
    Andrienko D., G. Germano, M. P. Allen (2000): ‘Liquid crystal director fluctuations and surface anchoring by molecular simulation’. Phys. Rev. E 62, 6688–6693.ADSCrossRefGoogle Scholar
  108. 108.
    Bates M. A., C. Zannoni (1997): ‘A molecular dynamics simulation study of the nematic-isotropic interface of a Gay-Berne liquid crystal’. Chem. Phys. Lett. 280, 40–45.CrossRefADSGoogle Scholar
  109. 109.
    Allen M. P. (2000): ‘Molecular simulation and theory of the isotropic-nematic interface’. J. Chem. Phys. 112, 5447–5453.ADSCrossRefGoogle Scholar
  110. 110.
    Al-Barwani M. S., M. P. Allen (2000) ‘Isotropic-nematic interface of soft spherocylinders’. Phys. Rev. E 62, 6706–6710.ADSCrossRefGoogle Scholar
  111. 111.
    McDonald A. J., M. P. Allen, F. Schmid (2001): ‘Surface tension of the isotropic-nematic interface’. Phys. Rev. E 63, 10701–10704.ADSCrossRefGoogle Scholar
  112. 112.
    Akino N., F. Schmid, M. P. Allen (2001): ‘Molecular-dynamics study of the nematic-isotropic interface’. Phys. Rev. E 63, 41706–41713.ADSCrossRefGoogle Scholar
  113. 113.
    Wall G. D., D. J. Cleaver (1997): ‘Computer simulation studies of confined liquid-crystal films’. Phys. Rev. E 56, 4306–4316.ADSCrossRefGoogle Scholar
  114. 114.
    Mills S. J., C. M. Care, M. P. Neal, D. J. Cleaver (1998): ‘Computer simulation of an unconfined liquid crystal film’. Phys. Rev. E 58, 3284–3294.ADSCrossRefGoogle Scholar
  115. 115.
    Gruhn T., M. Schön (1998): ‘Substrate-induced order in confined nematic liquid-crystal films’. J. Chem. Phys. 108, 9124–9136. J CHEM PHYS 108: (21) 9124-9136 JUN 1 1998ADSCrossRefGoogle Scholar
  116. 116.
    Gruhn T., M. Schön (1998): ‘Grand canonical ensemble Monte Carlo simulations of confined ‘nematic’ Gay-Berne films’. Thin solid films 330, 46–58.CrossRefADSGoogle Scholar
  117. 117.
    van Roij R., M. Dijkstra, R. Evans (2000): ‘Orientational wetting and capillary nematization of hard-rod fluids’. Europhys. Lett. 49, 350–356.ADSCrossRefGoogle Scholar
  118. 118.
    Dijkstra M., R. van Roij, R. Evans (2001): ‘Wetting and capillary nematization of a hard-rod fluid: A simulation study’ Phys. Rev. E 63, 051703–051710.ADSCrossRefGoogle Scholar
  119. 119.
    Allen M. P. (2000): ‘Pressure tensor profiles at the isotropic-nematic interface’. Chem. Phys. Lett. 331, 513–518.CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Friederike Schmid
    • 1
  • Nguyen H. Phuong
    • 1
  1. 1.Theoretische PhysikUniversität BielefeldBielefeldGermany

Personalised recommendations