Morphology of Langmuir Monolayer Phases

  • Mathias Lösche
  • Peter Krüger
Part of the Lecture Notes in Physics book series (LNP, volume 600)


Micrometer-scale domains formed during the first-order ‘main’ phase transition within Langmuir monolayers show characteristic shapes that are a consequence of the molecular interactions within the surface film. The relevant Hamiltonian includes the (one-dimensional) line tension, long-range dipole-dipole repulsion and a spontaneous curvature deriving from the chirality of the constituent molecules. Experimental observations have been compared with computer models in which domains were approximated by finite segments and their energy minimized with respect to the layout of the segments within the plane. Several levels of sophistication have been analyzed: (a) Elongated domains that are isolated within the film area, such that domain-domain interactions may be neglected; (b) isolated domains with non-trivial shapes; (c) elongated domains in a crowded situation where domain-domain interactions have been taken into account. Since nucleation events lead to a random distribution of individual domains within an ensemble in the latter case, the experimental results and the segmented models are at best similar in their pattern formation. These similarities are quantitatively compared using Minkowski functionals.


Line Tension Lipid Monolayer Langmuir Monolayer Spontaneous Curvature Domain Shape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albrecht, O., H. Gruler, E. Sackmann (1978): ‘Polymorphism of phospholipid monolayers’, J. Physique (France) 39, pp. 301–313CrossRefGoogle Scholar
  2. 2.
    Arns, C., M. Knackstedt, K.R. Mecke (2002): ‘Characterising the morphology of disordered materials’. In: Lecture Notes in Physics, ed. by K.R. Mecke, D. Stoyan (Springer, Berlin), this volumeGoogle Scholar
  3. 3.
    Beisbart, C., R. Dahlke, K.R. Mecke, H. Wagner (2002): ‘Vector-and tensor-valued descriptors for spatial patterns’. In: Lecture Notes in Physics, ed. by K.R. Mecke, D. Stoyan (Springer, Berlin), this volumeGoogle Scholar
  4. 4.
    Berge, B., A.J. Simon, A. Libchaber (1990): ‘Dynamics of gas-bubbles in monolayers’, Phys. Rev. A 41, pp. 6893–6900CrossRefADSGoogle Scholar
  5. 5.
    Bevegnu, D.J., H.M. McConnell (1992): ‘Line tension between liquid domains in lipid monolayers’, J. Phys. Chem. 96, pp. 6820–6824CrossRefGoogle Scholar
  6. 6.
    Bibo, A.M., C.M. Knobler, I.R. Peterson (1991): ‘A monolayer phase miscibility comparison of long-chain fatty acids and their ethyl esters’, J. Phys. Chem. 95, pp. 5591–5599CrossRefGoogle Scholar
  7. 7.
    Cadenhead, D.A., F. Müller-Landau, B.M.J. Kellner (1980): ‘Phase transitions in insoluble one and two-component films at the air/water interface’. In: Ordering in Two Dimensions, ed. by S.K. Sinha (Elsevier North Holland, Amsterdam), pp. 73–81Google Scholar
  8. 8.
    Dennin, M., C.M. Knobler (1997): ‘Experimental studies of bubble dynamics in a slowly driven monolayer foam’, Phys. Rev. Letters 78, pp. 2485–2488CrossRefADSGoogle Scholar
  9. 9.
    Fischer, A., M. Lösche, H. Möhwald, E. Sackmann (1984): ‘On the nature of the lipid monolayer phase transition’, J. Physique Lett. 45, pp. 785–791CrossRefGoogle Scholar
  10. 10.
    Heckl, W.M., M. Lösche, D.A. Cadenhead, H. Möhwald (1986): ‘Electrostatically induced growth of spiral domains in the presence of cholesterol’, Eur. Biophys. J. 14, pp. 11–17CrossRefGoogle Scholar
  11. 11.
    Heckl, W.M., H. Möhwald (1986): ‘An arrow window for observation of spiral lipid crystals’, Ber. Bunsenges. Phys. Chem. 90, pp. 1159–1163Google Scholar
  12. 12.
    Hénon, S., J. Meunier (1991): ‘Microscope at the Brewster angle: Direct observation of first-order phase transitions in monolayers’, Rev. Sci. Instrum. 62, pp. 936–939CrossRefADSGoogle Scholar
  13. 13.
    Hönig, D., D. Möbius (1991): ‘Direct visualization of monolayers at the air-water interface by Brewster angle microscopy’, J. Phys. Chem. 95, pp. 4590–4592CrossRefGoogle Scholar
  14. 14.
    Kaganer, V.M., H. Möhwald, P. Dutta (1999): ‘Structure and phase transitions in Langmuir monolayers’, Rev. Mod. Phys. 71, pp. 779–819CrossRefADSGoogle Scholar
  15. 15.
    Keller, D.J., H.M. McConnell, V.T. Moy (1986): ‘Theory of superstructures in lipid monolayer phase transitions’, J. Phys. Chem. 90, pp. 2311–2315CrossRefGoogle Scholar
  16. 16.
    Knobler, C.M. (1990): ‘Seeing phenomena in flatland: Studies of monolayers by fluorescence microscopy’, Science 249, pp. 870–874CrossRefADSGoogle Scholar
  17. 17.
    Krüger, P., M. Lösche (2000): ‘Molecular chirality and the domain shapes in lipid monolayers on aqueous surfaces’, Phys. Rev. E 62, pp. 7031–7043CrossRefADSGoogle Scholar
  18. 18.
    Krüger, P., M. Schalke, Z. Wang, R.H. Notter, R.A. Dluhy, M. Lösche (1999): ‘Effect of hydrophobic surfactant proteins SP-B and SP-C on binary phospholipid monolayers. I. Fluorescence and dark-field microscopy’, Biophys. J. 77, pp. 903–914CrossRefGoogle Scholar
  19. 19.
    Langmuir, I. (1917): ‘The constitution and fundamental properties of solids and liquids. II. Liquids’, J. Am. Chem. Soc. 39, pp. 1848–1906CrossRefGoogle Scholar
  20. 20.
    Lautz, C., T.M. Fischer, M. Weygand, M. Lösche, P.B. Howes, K. Kjaer (1998): ‘Determination of alkyl chain tilt angles in Langmuir monolayers: A comparison of Brewster angle autocorrelation spectroscopy and x-ray diffraction’, J. Chem. Phys. 108, pp. 4640–4646CrossRefADSGoogle Scholar
  21. 21.
    Lee, K.-Y.C., H.M. McConnell (1993): ‘Quantized shape transitions in lipid monolayer domains’, J. Phys. Chem. 97, pp. 9532–9539CrossRefGoogle Scholar
  22. 22.
    Lipowsky, R., E. Sackmann, eds. (1995): ‘Structure and Dynamics of Membranes’. In: Handbook of Biological Physics ed. by A.J. Hoff (Elsevier, Amsterdam), Vol. 1Google Scholar
  23. 23.
    Lösche, M., H. Möhwald (1984): ‘Fluorescence microscope to observe dynamical processes in monomolecular layers at the air/water interface’, Rev. Sci. Instrum. 55, pp. 1968–1972CrossRefADSGoogle Scholar
  24. 24.
    Lösche, M., E. Sackmann, H. Möhwald (1983): ‘A fluorescence microscopic study concerning the phase diagram of phospholipids’, Ber. Bunsenges. Phys. Chem. 87, pp. 848–852Google Scholar
  25. 25.
    Mayer, M.A., T.K. Vanderlick (1994): ‘Calculation of shapes of dipolar domains in insoluble monolayers: Analysis of shape stability and transitions’, J. Chem. Phys. 100, pp. 8399–8407CrossRefADSGoogle Scholar
  26. 26.
    Mayer, M.A., T.K. Vanderlick (1995): ‘Calculation of shapes of dipolar domains in two dimensional films: Effect of dipole tilt’, J. Chem. Phys. 103, pp. 9788–9794CrossRefADSGoogle Scholar
  27. 27.
    McConlogue, C.W., T.K. Vanderlick (1997): ‘A close look at domain formation in DPPC monolayers’, Langmuir 13, pp. 7158–7164CrossRefGoogle Scholar
  28. 28.
    McConlogue, C.W., T.K. Vanderlick (1999): ‘Molecular determinants of lipid domain shape’, Langmuir 15, pp. 234–237CrossRefGoogle Scholar
  29. 29.
    McConnell, H.M. (1991): ‘Structures and transitions in lipid monolayers at the air-water interface’, Annu. Rev. Phys. Chem. 42, pp. 171–195CrossRefADSGoogle Scholar
  30. 30.
    McConnell, H.M., V.T. Moy (1988): ‘Shapes of finite two-dimensional domains’, J. Phys. Chem. 92, pp. 4520–4525CrossRefGoogle Scholar
  31. 31.
    McConnell, H.M., P.A. Rice, D.J. Bevegnu (1990): ‘Brownian motion of lipid domains in electrostatic traps in monolayers’, J. Phys. Chem. 94, pp. 8965–8968CrossRefGoogle Scholar
  32. 32.
    Mecke, K.R. (1996): ‘Morphological characterization of patterns in reaction-diffusion systems’, Phys. Rev. E 53, pp. 4794–4800CrossRefADSGoogle Scholar
  33. 33.
    Mecke, K.R. (1998): ‘Integral geometry in statistical physics’, Int. J. Mod. Phys. 12, pp. 861–899CrossRefADSMathSciNetGoogle Scholar
  34. 34.
    Mecke, K.R. (2000): ‘Additivity, convexity, and beyond: Applications of Minkowski functionals in Statistical Physics’. In: Lecture Notes in Physics, ed. by K.R. Mecke, D. Stoyan (Springer, Berlin), pp. 72–184Google Scholar
  35. 35.
    Mecke, K.R., T. Buchert, H. Wagner (1994): ‘Robust morphological measures for large-scale structure in the universe’, Astron. Astrophys. 288, pp. 697–704ADSGoogle Scholar
  36. 36.
    Mecke, K.R., D. Stoyan, eds. (2000): ‘Statistical Physics and Spatial Statistics’, Lecture Notes in Physics (Springer, Berlin), Vol. 554Google Scholar
  37. 37.
    Miranda, J.A. (1999): ‘Closed form results for shape transitions in lipid monolayer domains’, J. Phys. Chem. B 103, pp. 1303–1307CrossRefGoogle Scholar
  38. 38.
    Nandi, N., B. Bagchi (1997): ‘Prediction of the senses of helical amphiphilic assemblies from effective intermolecular pair potentials: Studies on chiral monolayers and bilayers’, J. Phys. Chem. A 101, pp. 1343–1351CrossRefGoogle Scholar
  39. 39.
    Philips, M.C., D. Chapman (1968): ‘Monolayer characteristics of saturated 1,2-diacyl phosphatidylcholines (lecithins) and phosphatidylethanolamines at air-water interface’, Biochim. Biophys. Acta 163, pp. 301–313CrossRefGoogle Scholar
  40. 40.
    Singer, S.J., G.L. Nicolson (1972): ‘The fluid mosaic model of the structure of cell membranes’, Science 173, pp. 720–731CrossRefADSGoogle Scholar
  41. 41.
    Stoyan, D., A. Davtyan, D. Turetayev (2002): ‘Statistics for randemdom ains and particles’. In: Lecture Notes in Physics, ed. by K.R. Mecke, D. Stoyan (Springer, Berlin), this volumeGoogle Scholar
  42. 42.
    Weis, R.M., H.M. McConnell (1984): ‘Two-dimensional chiral crystals of phospholipid’, Nature 310, pp. 47–49CrossRefADSGoogle Scholar
  43. 43.
    Weis, R.M., H.M. McConnell (1985): ‘Cholesterol stabilizes the crystal-liquid interface in phospholipid monolayers’, J. Phys. Chem. 89, pp. 4453–4459CrossRefGoogle Scholar
  44. 44.
    Wurlitzer, S., P. Steffen, T.M. Fischer (2000): ‘Line tension of Langmuir monolayer phase boundaries determined with optical tweezers’, J. Chem. Phys. 112, pp. 5915–5918CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Mathias Lösche
    • 1
  • Peter Krüger
    • 1
  1. 1.Institute of Experimental Physics ILeipzig UniversityLeipzigGermany

Personalised recommendations